Boundedness of the solution of the third problem for the Laplace equation
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 317-340
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary.
A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary.
Classification : 31B10, 35B45, 35B65, 35J05, 35J25
Keywords: third problem; Laplace equation
@article{CMJ_2005_55_2_a3,
     author = {Medkov\'a, Dagmar},
     title = {Boundedness of the solution of the third problem for the {Laplace} equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {317--340},
     year = {2005},
     volume = {55},
     number = {2},
     mrnumber = {2137140},
     zbl = {1081.35013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a3/}
}
TY  - JOUR
AU  - Medková, Dagmar
TI  - Boundedness of the solution of the third problem for the Laplace equation
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 317
EP  - 340
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a3/
LA  - en
ID  - CMJ_2005_55_2_a3
ER  - 
%0 Journal Article
%A Medková, Dagmar
%T Boundedness of the solution of the third problem for the Laplace equation
%J Czechoslovak Mathematical Journal
%D 2005
%P 317-340
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a3/
%G en
%F CMJ_2005_55_2_a3
Medková, Dagmar. Boundedness of the solution of the third problem for the Laplace equation. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 317-340. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a3/

[1] T. S.  Angell, R. E.  Kleinman and J.  Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402. | MR

[2] M. Brelot: Éléments de la théorie classique du potentiel. Centre de documentation universitaire, Paris, 1961. | MR

[3] Yu. D.  Burago and V. G.  Maz’ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian)

[4] H.  Federer and W. P.  Ziemer: The Lebesgue set of a function whose partial derivatives are $p$-th power summable. Indiana Univ. Math.  J. 22 (1972), 139–158. | MR

[5] W. H.  Fleming: Functions whose partial derivatives are measures. Illinois J.  Math. 4 (1960), 452–478. | DOI | MR | Zbl

[6] L. E.  Fraenkel: Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge Tracts in Mathematics  128. Cambridge University Press, Cambridge, 2000. | MR

[7] N. V.  Grachev, and V. G.  Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19 (1986), 60–64. | MR

[8] N. V.  Grachev and V. G.  Maz’ya: Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-50. Linköping Univ., Linköping.

[9] N. V.  Grachev and V. G.  Maz’ya: Solvability of a Boundary Integral Equation on a Polyhedron. Report LiTH-MAT-R-91-50. Linköping Univ., Linköping.

[10] N. V.  Grachev and V. G.  Maz’ya: Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-06. Linköping Univ., Linköping.

[11] L. L.  Helms: Introduction to Potential Theory. Pure and Applied Mathematics  22. John Wiley & Sons, , 1969. | MR

[12] J.  Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics  823. Springer-Verlag, Berlin, 1980. | MR

[13] J.  Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547. | DOI | MR

[14] J.  Král and W. L.  Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory. Aplikace matematiky 31 (1986), 293–308. | MR

[15] N. L.  Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian) | MR

[16] D.  Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Math.  J. 47 (1997), 651–679. | DOI | MR

[17] D.  Medková: Solution of the Robin problem for the Laplace equation. Appl. Math. 43 (1998), 133–155. | DOI | MR

[18] D.  Medková: Solution of the Neumann problem for the Laplace equation. Czechoslovak Math.  J. 48 (1998), 768–784. | DOI

[19] D.  Medková: Continuous extendibility of solutions of the Neumann problem for the Laplace equation. Czechoslovak Math.  J 53 (2003), 377–395. | DOI | MR

[20] D.  Medková: Continuous extendibility of solutions of the third problem for the Laplace equation. Czechoslovak Math.  J 53 (2003), 669–688. | DOI | MR

[21] D.  Medková: Solution of the Dirichlet problem for the Laplace equation. Appl. Math. 44 (1999), 143–168. | DOI

[22] J.  Nečas: Les méthodes directes en théorie des équations élliptiques. Academia, Prague, 1967. | MR

[23] I.  Netuka: Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383. | MR | Zbl

[24] I.  Netuka: Generalized Robin problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 312–324. | MR | Zbl

[25] I.  Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 462–489. | MR | Zbl

[26] I.  Netuka: The third boundary value problem in potential theory. Czechoslovak Math.  J. 2(97) (1972), 554–580. | MR | Zbl

[27] A.  Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Applicable Analysis 45 (1992), 135–177. | DOI | MR

[28] A.  Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum. Applicable Analysis 56 (1995), 109–115. | DOI | MR | Zbl

[29] M.  Schechter: Principles of Functional Analysis. Academic Press, , 1973. | MR

[30] W. P. Ziemer: Weakly Differentiable Functions. Springer-Verlag, , 1989. | MR | Zbl