Keywords: iterated equation; Almansi’s expansion; Kelvin principle
@article{CMJ_2005_55_2_a23,
author = {\"Ozalp, N. and \c{C}etinkaya, A.},
title = {Radial solutions of a class of iterated partial differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {531--541},
year = {2005},
volume = {55},
number = {2},
mrnumber = {2137160},
zbl = {1081.35006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a23/}
}
Özalp, N.; Çetinkaya, A. Radial solutions of a class of iterated partial differential equations. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 531-541. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a23/
[1] E. Almansi: Sull’ integrazione dell differenziale $\Delta ^{2m}=0$. Ann. Mat. Ser. II, III (1899), 1–59.
[2] A. Altın: Some expansion formulas for a class of singular partial differential equations. Proc. Am. Mat. Soc. 85 (1982), 42–46. | DOI | MR
[3] A. Altın: Radial type solutions for a class of third order equations and their iterates. Math. Slovaca 49 (1999), 183–187. | MR
[4] A. O. Çelebi: On the generalized Tricomi’s equation. Comm. Fac. Sci. Univ. Ankara Ser. A 17 (1968), 1–31. | MR
[5] A. Weinstein: On a class of partial differential equations of even order. Ann. Mat. Pura Appl. 39 (1955), 245–254. | DOI | MR | Zbl
[6] N. Özalp and A. Çetinkaya: Expansion formulas and Kelvin principle for a class of partial differential equations. Math. Balkanica (NS) 15 (2001), 219–226. | MR
[7] N. Özalp: $r^{m}$-type solutions for a class of partial differential equations. Commun. Fac. Sci. Univ. Ank. Series A1 (2001), 95–100. | MR