Keywords: primitive lattice points; lattice point discrepancy; planar domains
@article{CMJ_2005_55_2_a22,
author = {Nowak, Werner Georg},
title = {Primitive lattice points inside an ellipse},
journal = {Czechoslovak Mathematical Journal},
pages = {519--530},
year = {2005},
volume = {55},
number = {2},
mrnumber = {2137159},
zbl = {1081.11064},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a22/}
}
Nowak, Werner Georg. Primitive lattice points inside an ellipse. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 519-530. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a22/
[1] P. Bleher: On the distribution of the number of lattice points inside a family of convex ovals. Duke Math. J. 67 (1992), 461–481. | MR | Zbl
[2] J. B. Conrey: More than two fifth of the zeros of the Riemann zeta-function are on the critical line. J. Reine Angew. Math. 399 (1989), 1–26. | MR
[3] H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series I. J. London Math. Soc. 11 (1936), 181–185. | MR
[4] H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series II. J. London Math. Soc. 11 (1936), 307–312. | MR
[5] I. S. Gradshteyn and I. M. Ryzhik: Table of Integrals, Series, and Products, 5th ed. A. Jeffrey (ed.), Academic Press, San Diego, 1994. | MR
[6] M. N. Huxley: Exponential sums and lattice points II. Proc. London Math. Soc. 66 (1993), 279–301. | MR | Zbl
[7] M. N. Huxley: Area, Lattice Points, and Exponential Sums. LMS Monographs, New Ser. Vol. 13. Clarendon Press, Oxford, 1996. | MR
[8] M. N. Huxley: Exponential sums and lattice points III. Proc. London Math. Soc. 87 (2003), 591–609. | MR | Zbl
[9] M. N. Huxley and W. G. Nowak: Primitive lattice points in convex planar domains. Acta Arithm. 76 (1996), 271–283. | DOI | MR
[10] A. Ivić: The Riemann zeta-function. Wiley & Sons, New York, 1985. | MR
[11] E. Krätzel: Lattice Points. Kluwer Academic Publishers, Berlin, 1988. | MR
[12] E. Krätzel: Analytische Funktionen in der Zahlentheorie. Teubner, Wiesbaden, 2000. | MR
[13] N. Levinson: More than one third of the zeros of Riemann’s zeta-function are on $\sigma =\frac{1}{2}$. Adv. Math. 13 (1974), 383–436. | DOI | MR
[14] W. Müller: Lattice points in convex planar domains: Power moments with an application to primitive lattice points. In: Proc. Number Theory Conf., Vienna 1996, W. G. Nowak, J. Schoißengeier (eds.), , Vienna, 1996, pp. 189–199.
[15] W. G. Nowak: An $\Omega $-estimate for the lattice rest of a convex planar domain. Proc.Roy. Soc. Edinburgh, Sect. A 100 (1985), 295–299. | DOI | MR | Zbl
[16] W. G. Nowak: On the mean lattice point discrepancy of a convex disc. Arch. Math. (Basel) 78 (2002), 241–248. | DOI | MR | Zbl
[17] J. Pintz: On the distribution of square-free numbers. J. London Math. Soc. 28 (1983), 401–405. | MR | Zbl
[18] H. S. A. Potter: Approximate equations for the Epstein zeta-function. Proc. London Math. Soc. 36 (1934), 501–515. | Zbl
[19] A. Selberg: On the Zeros of Riemann’s zeta-function. Skr. Norske Vid. Akad., Oslo, 1943. | MR | Zbl
[20] E. C. Titchmarsh: The Theory of the Riemann zeta-function, 2nd ed. Clarendon Press, Oxford, 1986. | MR | Zbl
[21] M. Voronin: On the zeros of zeta-functions of quadratic forms. Trudy Mat. Inst. Steklova 142 (1976), 135–147. | MR | Zbl
[22] Wolfram Research, Inc., Mathematica 4.1. Champaign, 2001.
[23] J. Wu: On the primitive circle problem. Monatsh. Math. 135 (2002), 69–81. | DOI | MR | Zbl
[24] W. Zhai, X. D. Cao: On the number of coprime integer pairs within a circle. Acta Arithm. 90 (1999), 1–16. | MR
[25] W. Zhai: On primitive lattice points in planar domains. Acta Arithm. 109 (2003), 1–26. | DOI | MR | Zbl