Primitive lattice points inside an ellipse
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 519-530
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $Q(u, v)$ be a positive definite binary quadratic form with arbitrary real coefficients. For large real $x$, one may ask for the number $B(x)$ of primitive lattice points (integer points $(m, n)$ with $\gcd (M,n) =1$) in the ellipse disc $Q(u, v)\le x$, in particular, for the remainder term $R(x)$ in the asymptotics for $B(x)$. While upper bounds for $R(x)$ depend on zero-free regions of the zeta-function, and thus, in most published results, on the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that the absolute value or $R(x)$ is, in integral mean, at least a positive constant $c$ time $x^{1/4}$. Furthermore, it is shown how to find an explicit value for $c$, for each specific given form $Q$.
Let $Q(u, v)$ be a positive definite binary quadratic form with arbitrary real coefficients. For large real $x$, one may ask for the number $B(x)$ of primitive lattice points (integer points $(m, n)$ with $\gcd (M,n) =1$) in the ellipse disc $Q(u, v)\le x$, in particular, for the remainder term $R(x)$ in the asymptotics for $B(x)$. While upper bounds for $R(x)$ depend on zero-free regions of the zeta-function, and thus, in most published results, on the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that the absolute value or $R(x)$ is, in integral mean, at least a positive constant $c$ time $x^{1/4}$. Furthermore, it is shown how to find an explicit value for $c$, for each specific given form $Q$.
Classification : 11E45, 11P21
Keywords: primitive lattice points; lattice point discrepancy; planar domains
@article{CMJ_2005_55_2_a22,
     author = {Nowak, Werner Georg},
     title = {Primitive lattice points inside an ellipse},
     journal = {Czechoslovak Mathematical Journal},
     pages = {519--530},
     year = {2005},
     volume = {55},
     number = {2},
     mrnumber = {2137159},
     zbl = {1081.11064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a22/}
}
TY  - JOUR
AU  - Nowak, Werner Georg
TI  - Primitive lattice points inside an ellipse
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 519
EP  - 530
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a22/
LA  - en
ID  - CMJ_2005_55_2_a22
ER  - 
%0 Journal Article
%A Nowak, Werner Georg
%T Primitive lattice points inside an ellipse
%J Czechoslovak Mathematical Journal
%D 2005
%P 519-530
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a22/
%G en
%F CMJ_2005_55_2_a22
Nowak, Werner Georg. Primitive lattice points inside an ellipse. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 519-530. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a22/

[1] P. Bleher: On the distribution of the number of lattice points inside a family of convex ovals. Duke Math. J. 67 (1992), 461–481. | MR | Zbl

[2] J. B. Conrey: More than two fifth of the zeros of the Riemann zeta-function are on the critical line. J. Reine Angew. Math. 399 (1989), 1–26. | MR

[3] H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series  I. J. London Math. Soc. 11 (1936), 181–185. | MR

[4] H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series  II. J. London Math. Soc. 11 (1936), 307–312. | MR

[5] I. S. Gradshteyn and I. M. Ryzhik: Table of Integrals, Series, and Products, 5th ed. A. Jeffrey (ed.), Academic Press, San Diego, 1994. | MR

[6] M. N. Huxley: Exponential sums and lattice points  II. Proc. London Math. Soc. 66 (1993), 279–301. | MR | Zbl

[7] M. N. Huxley: Area, Lattice Points, and Exponential Sums. LMS Monographs, New Ser. Vol.  13. Clarendon Press, Oxford, 1996. | MR

[8] M. N. Huxley: Exponential sums and lattice points  III. Proc. London Math. Soc. 87 (2003), 591–609. | MR | Zbl

[9] M. N. Huxley and W. G. Nowak: Primitive lattice points in convex planar domains. Acta Arithm. 76 (1996), 271–283. | DOI | MR

[10] A. Ivić: The Riemann zeta-function. Wiley & Sons, New York, 1985. | MR

[11] E. Krätzel: Lattice Points. Kluwer Academic Publishers, Berlin, 1988. | MR

[12] E. Krätzel: Analytische Funktionen in der Zahlentheorie. Teubner, Wiesbaden, 2000. | MR

[13] N. Levinson: More than one third of the zeros of Riemann’s zeta-function are on $\sigma =\frac{1}{2}$. Adv. Math. 13 (1974), 383–436. | DOI | MR

[14] W. Müller: Lattice points in convex planar domains: Power moments with an application to primitive lattice points. In: Proc. Number Theory Conf., Vienna  1996, W. G. Nowak, J. Schoißengeier (eds.), , Vienna, 1996, pp. 189–199.

[15] W. G. Nowak: An $\Omega $-estimate for the lattice rest of a convex planar domain. Proc.Roy. Soc. Edinburgh, Sect.  A 100 (1985), 295–299. | DOI | MR | Zbl

[16] W. G. Nowak: On the mean lattice point discrepancy of a convex disc. Arch. Math. (Basel) 78 (2002), 241–248. | DOI | MR | Zbl

[17] J. Pintz: On the distribution of square-free numbers. J. London Math. Soc. 28 (1983), 401–405. | MR | Zbl

[18] H. S. A. Potter: Approximate equations for the Epstein zeta-function. Proc. London Math. Soc. 36 (1934), 501–515. | Zbl

[19] A. Selberg: On the Zeros of Riemann’s zeta-function. Skr. Norske Vid. Akad., Oslo, 1943. | MR | Zbl

[20] E. C. Titchmarsh: The Theory of the Riemann zeta-function, 2nd ed. Clarendon Press, Oxford, 1986. | MR | Zbl

[21] M. Voronin: On the zeros of zeta-functions of quadratic forms. Trudy Mat. Inst. Steklova 142 (1976), 135–147. | MR | Zbl

[22] Wolfram Research, Inc., Mathematica 4.1. Champaign, 2001.

[23] J. Wu: On the primitive circle problem. Monatsh. Math. 135 (2002), 69–81. | DOI | MR | Zbl

[24] W. Zhai, X. D. Cao: On the number of coprime integer pairs within a circle. Acta Arithm. 90 (1999), 1–16. | MR

[25] W. Zhai: On primitive lattice points in planar domains. Acta Arithm. 109 (2003), 1–26. | DOI | MR | Zbl