A note on the independent domination number of subset graph
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 511-517
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The independent domination number $i(G)$ (independent number $\beta (G)$) is the minimum (maximum) cardinality among all maximal independent sets of $G$. Haviland (1995) conjectured that any connected regular graph $G$ of order $n$ and degree $\delta \le \frac{1}{2}{n}$ satisfies $i(G)\le \lceil \frac{2n}{3\delta }\rceil \frac{1}{2}{\delta }$. For $1\le k\le l\le m$, the subset graph $S_{m}(k,l)$ is the bipartite graph whose vertices are the $k$- and $l$-subsets of an $m$ element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for $i(S_{m}(k,l))$ and prove that if $k+l=m$ then Haviland’s conjecture holds for the subset graph $S_{m}(k,l)$. Furthermore, we give the exact value of $\beta (S_{m}(k,l))$.
The independent domination number $i(G)$ (independent number $\beta (G)$) is the minimum (maximum) cardinality among all maximal independent sets of $G$. Haviland (1995) conjectured that any connected regular graph $G$ of order $n$ and degree $\delta \le \frac{1}{2}{n}$ satisfies $i(G)\le \lceil \frac{2n}{3\delta }\rceil \frac{1}{2}{\delta }$. For $1\le k\le l\le m$, the subset graph $S_{m}(k,l)$ is the bipartite graph whose vertices are the $k$- and $l$-subsets of an $m$ element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for $i(S_{m}(k,l))$ and prove that if $k+l=m$ then Haviland’s conjecture holds for the subset graph $S_{m}(k,l)$. Furthermore, we give the exact value of $\beta (S_{m}(k,l))$.
Classification :
05C35, 05C69
Keywords: independent domination number; independent number; subset graph
Keywords: independent domination number; independent number; subset graph
@article{CMJ_2005_55_2_a21,
author = {Chen, Xue-Gang and Ma, De-xiang and Xing, Hua-Ming and Sun, Liang},
title = {A note on the independent domination number of subset graph},
journal = {Czechoslovak Mathematical Journal},
pages = {511--517},
year = {2005},
volume = {55},
number = {2},
mrnumber = {2137158},
zbl = {1081.05082},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a21/}
}
TY - JOUR AU - Chen, Xue-Gang AU - Ma, De-xiang AU - Xing, Hua-Ming AU - Sun, Liang TI - A note on the independent domination number of subset graph JO - Czechoslovak Mathematical Journal PY - 2005 SP - 511 EP - 517 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a21/ LA - en ID - CMJ_2005_55_2_a21 ER -
Chen, Xue-Gang; Ma, De-xiang; Xing, Hua-Ming; Sun, Liang. A note on the independent domination number of subset graph. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 511-517. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a21/