On finitely generated multiplication modules
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 503-510
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We shall prove that if $M$ is a finitely generated multiplication module and $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$, then there exists a distributive lattice $\bar{M}$ such that $\mathop {\mathrm Spec}(M)$ with Zariski topology is homeomorphic to $\mathop {\mathrm Spec}(\bar{M})$ to Stone topology. Finally we shall give a characterization of finitely generated multiplication $R$-modules $M$ such that $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$.
We shall prove that if $M$ is a finitely generated multiplication module and $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$, then there exists a distributive lattice $\bar{M}$ such that $\mathop {\mathrm Spec}(M)$ with Zariski topology is homeomorphic to $\mathop {\mathrm Spec}(\bar{M})$ to Stone topology. Finally we shall give a characterization of finitely generated multiplication $R$-modules $M$ such that $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$.
Classification : 06B10, 13A15, 13C13, 13C99
Keywords: prime submodules; multiplication modules; distributive lattices; spectral spaces
@article{CMJ_2005_55_2_a20,
     author = {Nekooei, R.},
     title = {On finitely generated multiplication modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {503--510},
     year = {2005},
     volume = {55},
     number = {2},
     mrnumber = {2137157},
     zbl = {1084.13500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a20/}
}
TY  - JOUR
AU  - Nekooei, R.
TI  - On finitely generated multiplication modules
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 503
EP  - 510
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a20/
LA  - en
ID  - CMJ_2005_55_2_a20
ER  - 
%0 Journal Article
%A Nekooei, R.
%T On finitely generated multiplication modules
%J Czechoslovak Mathematical Journal
%D 2005
%P 503-510
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a20/
%G en
%F CMJ_2005_55_2_a20
Nekooei, R. On finitely generated multiplication modules. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 503-510. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a20/

[1] R.  Balbes and P.  Dwinger: Distributive Lattices. Univ. of Missouri Press, Missouri, 1974. | MR

[2] T.  Duraivel: Topology on spectrum of modules. J.  Ramanujan Math. Soc. 9 (1994), 25–34. | MR | Zbl

[3] M.  Hochster: Prime ideal structure in commutative rings. Trans. Amer. Math. Soc. 142 (1969), 43–60. | DOI | MR | Zbl

[4] C. P. Lu: $M$-radicals of submodules in modules. Math. Japon. 34 (1989), 211–219. | MR | Zbl

[5] C. P. Lu: The Zariski topology on the prime spectrum of a module. Houston J. Math. 25 (1999), 417–432. | MR | Zbl

[6] R. L. McCasland, M. E.  Moore and P. F.  Smith: Generators for the semimodule of varieties of a free module. Rocky Mountain J. Math. 29 (1999), 1467–1482. | DOI | MR

[7] H.  Simmons: Reticulated rings. J. Algebra 66 (1980), 169–192. | DOI | MR | Zbl

[8] P. F. Smith: Some remarks on multiplication modules. Arch. Math. 50 (1998), 223–235. | MR