On convergence theory in fuzzy topological spaces and its applications
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 295-316
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce and study new concepts of convergence and adherent points for fuzzy filters and fuzzy nets in the light of the $Q$-relation and the $Q$-neighborhood of fuzzy points due to Pu and Liu [28]. As applications of these concepts we give several new characterizations of the closure of fuzzy sets, fuzzy Hausdorff spaces, fuzzy continuous mappings and strong $Q$-compactness. We show that there is a relation between the convergence of fuzzy filters and the convergence of fuzzy nets similar to the one which exists between the convergence of filters and the convergence of nets in topological spaces.
In this paper we introduce and study new concepts of convergence and adherent points for fuzzy filters and fuzzy nets in the light of the $Q$-relation and the $Q$-neighborhood of fuzzy points due to Pu and Liu [28]. As applications of these concepts we give several new characterizations of the closure of fuzzy sets, fuzzy Hausdorff spaces, fuzzy continuous mappings and strong $Q$-compactness. We show that there is a relation between the convergence of fuzzy filters and the convergence of fuzzy nets similar to the one which exists between the convergence of filters and the convergence of nets in topological spaces.
Classification : 54A20, 54A40, 54C08, 54H12
Keywords: fuzzy points; $Q$-neighborhoods; fuzzy filters; fuzzy nets; limit; adherent and $Q$-adherent points of fuzzy filters and fuzzy nets; fuzzy continuity; strong $Q$-compactness
@article{CMJ_2005_55_2_a2,
     author = {Nouh, Ali Ahmed},
     title = {On convergence theory in fuzzy topological spaces and its applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {295--316},
     year = {2005},
     volume = {55},
     number = {2},
     mrnumber = {2137139},
     zbl = {1081.54007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a2/}
}
TY  - JOUR
AU  - Nouh, Ali Ahmed
TI  - On convergence theory in fuzzy topological spaces and its applications
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 295
EP  - 316
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a2/
LA  - en
ID  - CMJ_2005_55_2_a2
ER  - 
%0 Journal Article
%A Nouh, Ali Ahmed
%T On convergence theory in fuzzy topological spaces and its applications
%J Czechoslovak Mathematical Journal
%D 2005
%P 295-316
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a2/
%G en
%F CMJ_2005_55_2_a2
Nouh, Ali Ahmed. On convergence theory in fuzzy topological spaces and its applications. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 295-316. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a2/

[1] R. G.  Bartle: Nets and filters in topology. Amer. Math. Monthly 62 (1955), 551–557. | DOI | MR | Zbl

[2] R.  Bělohlávek: Fuzzy Relational Systems: Fundations and Principles. Kluwer, New York, 2002.

[3] G.  Birkhoff: Moore-Smith convergence in general topology. Ann. Math. 38 (1937), 39–56. | DOI | MR | Zbl

[4] N.  Bourbaki: Topologie Generale, Ch. 1. Actualites Sci. Indust., Paris 858, 1940.

[5] H.  Cartan: Théorie des filtres. C.  R.  Acad. Sci. Paris 205 (1937), 595–598. | Zbl

[6] C. L. Chang: Fuzzy topological spaces. J.  Math. Anal. Appl. 24 (1968), 182–190. | DOI | MR | Zbl

[7] Hu Cheng-Ming: Theory of convergence in fuzzy topological spaces. J.  Fuzzy Math. 1 (1993), 1–12. | MR

[8] A.  Choubey and A. K.  Srivastava: On $\alpha $-compact fuzzy topological spaces. J.  Fuzzy Math. 1 (1993), 321–326. | MR

[9] P.  Eklund and W.  Gähler: Fuzzy filter functors and convergence. Applictions of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht-Boston-London, 1992, pp. 109–136. | MR

[10] W.  Gähler: Convergence. Fuzzy Sets and Systems 73 (1995), 97–129.

[11] W.  Gähler: The general fuzzy filter approach to fuzzy topology. Part I. Fuzzy Sets and Systems 76 (1995), 205–224. | MR

[12] W.  Gähler: The general fuzzy filter approach to fuzzy topology. Part II. Fuzzy Sets and Systems 76 (1995), 225–246. | DOI

[13] Wang Guojun: A new fuzzy compactness defined by fuzzy nets. J.  Math. Anal. Appl. 94 (1983), 1–23. | DOI | MR | Zbl

[14] A.  Kandil, E.  Kerre, A.  Nouh and M. E.  El-Shafei: Generalized mappings between fuzzy topological spaces. Math. Pannon. 31 (1992), 59–71. | MR

[15] J. L.  Kelley: General Topology. Van Nostrand, New York, 1955. | MR | Zbl

[16] E. E.  Kerre, A. A.  Nouh and A.  Kandil: Generalized compactness in fuzzy topological spaces. Math. Vesnik 43 (1991), 29–40. | MR

[17] E. E.  Kerre, A. A.  Nouh and A.  Kandil: Operations on the class of all fuzzy sets on a universe endowed with a fuzzy topology. J.  Math. Anal. Appl. 180 (1993), 325–341. | DOI | MR

[18] G. J.  Klir and B.  Yuah: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Perentice Hall, , 1995, pp. 574. | MR

[19] R.  Lowen: Initial and final fuzzy topologies and the fuzzy Tychonoff theorem. J.  Math. Anal. Appl. 58 (1977), 11–21. | DOI | MR | Zbl

[20] R.  Lowen: Convergence in fuzzy topological spaces. Gen. Topol. Appl. 10 (1979), 147–160. | DOI | MR | Zbl

[21] R.  Lowen: The relation between filter and net convergence in fuzzy topological spaces. Fuzzy Math. 3 (1983), 41–52. | MR | Zbl

[22] M.  Macho Stadler and M. A.  De Prada Vicente: Fuzzy $t$-net theory. Fuzzy Sets and Systems 37 (1990), 225–235. | DOI | MR

[23] M.  Macho Stadler and M. A.  De Prada Vicente: On $N$-convergence of fuzzy nets. Fuzzy Sets and Systems 51 (1992), 203–217. | DOI | MR

[24] M.  Macho Stadler and M. A.  De Prada Vicente: $t^*$-fuzzy topological concepts. Portugaliae Math. 49 (1992), 85–108. | MR

[25] E. H.  Moore and H. L.  Smith: A general theory of limits. Amer. J.  Math. 44 (1922), 102–121. | DOI | MR

[26] M. A.  De Prada Vicente and M. S.  Aranguren: Fuzzy filters. J. Math. Anal. Appl. 129 (1988), 560–568. | DOI | MR

[27] M. A.  De Prada Vicente and M. M.  Stadler: $t$-prefilter theory. Fuzzy Sets and Systems 38 (1990), 115–124. | MR

[28] Pu Pao-Ming and Liu Ying-Ming: Fuzzy topology  I. J.  Math. Anal. Appl. 76 (1980), 571–599. | MR

[29] Pu Pao-Ming and Liu Ying-Ming: Fuzzy topology  II. J.  Math. Anal. Appl. 77 (1980), 20–37. | MR

[30] R. V.  Sarma and N.  Ajmal: Fuzzy nets and their application. Fuzzy Sets and Systems 51 (1992), 41–51. | DOI | MR

[31] Lee Bu Yong, Park Jin Han and Park Bae Hun: Fuzzy convergence structures. Fuzzy Sets and Systems 56 (1993), 309–315. | DOI | MR

[32] L. A.  Zadeh: Fuzzy sets. Information and Control 8 (1965), 338–353. | DOI | MR | Zbl

[33] Li Zhongfu: Compactness in fuzzy topological spaces. Kuxue Tongbao 29 (1984), 582–585. | MR | Zbl