Abelian groups which have trivial absolute coGalois group
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 433-437
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article we characterize those abelian groups for which the coGalois group (associated to a torsion free cover) is equal to the identity.
In this article we characterize those abelian groups for which the coGalois group (associated to a torsion free cover) is equal to the identity.
Classification : 13C11, 16D10, 16G20, 20K30, 20K40
Keywords: group; cover; torsion free
@article{CMJ_2005_55_2_a12,
     author = {Enochs, Edgar E. and Rada, Juan},
     title = {Abelian groups which have trivial absolute {coGalois} group},
     journal = {Czechoslovak Mathematical Journal},
     pages = {433--437},
     year = {2005},
     volume = {55},
     number = {2},
     mrnumber = {2137149},
     zbl = {1081.20064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a12/}
}
TY  - JOUR
AU  - Enochs, Edgar E.
AU  - Rada, Juan
TI  - Abelian groups which have trivial absolute coGalois group
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 433
EP  - 437
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a12/
LA  - en
ID  - CMJ_2005_55_2_a12
ER  - 
%0 Journal Article
%A Enochs, Edgar E.
%A Rada, Juan
%T Abelian groups which have trivial absolute coGalois group
%J Czechoslovak Mathematical Journal
%D 2005
%P 433-437
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a12/
%G en
%F CMJ_2005_55_2_a12
Enochs, Edgar E.; Rada, Juan. Abelian groups which have trivial absolute coGalois group. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 433-437. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a12/

[1] E. Enochs: Torsion free covering modules. Proc. Am. Math. Soc. 121 (1963), 223–235. | MR | Zbl

[2] E.  Enochs: Torsion free covering modules,  II. Arch. Math. 22 (1971), 37–52. | DOI | MR | Zbl

[3] E. Enochs: Injective and flat covers, envelopes and resolvents. Israel J.  Math. 39 (1981), 189–209. | DOI | MR | Zbl

[4] E. Enochs, J. R.  García Rozas and L. Oyonarte: Covering morphisms. Commun. Algebra 28 (2000), 3823–3835. | DOI | MR

[5] E. Enochs, J. R.  García Rozas and L. Oyonarte: Compact coGalois groups. Math. Proc. Camb. Phil. Soc. 128 (2000), 233–244. | DOI | MR

[6] I.  Kaplansky: Infinite Abelian Groups. University of Michigan Press, Michigan, 1969. | MR | Zbl

[7] T. Wakamatsu: Stable equivalence for self-injective algebras and a generalization of tilting modules. J.  Algebra 134 (1990), 298–325. | DOI | MR | Zbl

[8] J.  Xu: Flat covers of modules. Lectures Notes in Math. Vol. 1634, Springer-Verlag, , 1996. | MR | Zbl