Weighted inequalities for integral operators with some homogeneous kernels
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 423-432
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we study integral operators of the form \[ Tf(x)=\int | x-a_1y|^{-\alpha _1}\dots | x-a_my|^{-\alpha _m}f(y)\mathrm{d}y, \] $\alpha _1+\dots +\alpha _m=n$. We obtain the $L^p(w)$ boundedness for them, and a weighted $(1,1)$ inequality for weights $w$ in $A_p$ satisfying that there exists $c\ge 1$ such that $w( a_ix) \le cw( x)$ for a.e. $x\in \mathbb R^n$, $1\le i\le m$. Moreover, we prove $\Vert Tf\Vert _{{\mathrm BMO}}\le c\Vert f\Vert _\infty $ for a wide family of functions $f\in L^\infty ( \mathbb R^n)$.
In this paper we study integral operators of the form \[ Tf(x)=\int | x-a_1y|^{-\alpha _1}\dots | x-a_my|^{-\alpha _m}f(y)\mathrm{d}y, \] $\alpha _1+\dots +\alpha _m=n$. We obtain the $L^p(w)$ boundedness for them, and a weighted $(1,1)$ inequality for weights $w$ in $A_p$ satisfying that there exists $c\ge 1$ such that $w( a_ix) \le cw( x)$ for a.e. $x\in \mathbb R^n$, $1\le i\le m$. Moreover, we prove $\Vert Tf\Vert _{{\mathrm BMO}}\le c\Vert f\Vert _\infty $ for a wide family of functions $f\in L^\infty ( \mathbb R^n)$.
@article{CMJ_2005_55_2_a11,
author = {Riveros, Mar{\'\i}a Silvina and Urciuolo, Marta},
title = {Weighted inequalities for integral operators with some homogeneous kernels},
journal = {Czechoslovak Mathematical Journal},
pages = {423--432},
year = {2005},
volume = {55},
number = {2},
mrnumber = {2137148},
zbl = {1081.42018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a11/}
}
TY - JOUR AU - Riveros, María Silvina AU - Urciuolo, Marta TI - Weighted inequalities for integral operators with some homogeneous kernels JO - Czechoslovak Mathematical Journal PY - 2005 SP - 423 EP - 432 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a11/ LA - en ID - CMJ_2005_55_2_a11 ER -
Riveros, María Silvina; Urciuolo, Marta. Weighted inequalities for integral operators with some homogeneous kernels. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 423-432. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a11/