Keywords: archimedean lattice-ordered group; $a$-closure; rational-valued functions; zero-dimensional space
@article{CMJ_2005_55_2_a10,
author = {Hager, Anthony W. and Kimber, Chawne M. and McGovern, Warren W.},
title = {Unique $a$-closure for some $\ell$-groups of rational valued functions},
journal = {Czechoslovak Mathematical Journal},
pages = {409--421},
year = {2005},
volume = {55},
number = {2},
mrnumber = {2137147},
zbl = {1081.06020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a10/}
}
TY - JOUR AU - Hager, Anthony W. AU - Kimber, Chawne M. AU - McGovern, Warren W. TI - Unique $a$-closure for some $\ell$-groups of rational valued functions JO - Czechoslovak Mathematical Journal PY - 2005 SP - 409 EP - 421 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a10/ LA - en ID - CMJ_2005_55_2_a10 ER -
%0 Journal Article %A Hager, Anthony W. %A Kimber, Chawne M. %A McGovern, Warren W. %T Unique $a$-closure for some $\ell$-groups of rational valued functions %J Czechoslovak Mathematical Journal %D 2005 %P 409-421 %V 55 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a10/ %G en %F CMJ_2005_55_2_a10
Hager, Anthony W.; Kimber, Chawne M.; McGovern, Warren W. Unique $a$-closure for some $\ell$-groups of rational valued functions. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 409-421. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a10/
[1] M. Anderson and T. Feil: Lattice-Ordered Groups. Reidel, Dordrecht, 1989. | MR
[2] E. Aron and A. Hager: Convex vector lattices and $\ell $-algebras. Topology Appl. 12 (1981), 1–10. | DOI | MR
[3] A. Bigard, K. Keimel and S. Wolfenstein: Groupes et anneaux reticules. Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR
[4] P. Conrad: Archimedean extensions of lattice-ordered groups. J. Indian Math. Soc. 30 (1966), 131–160. | MR | Zbl
[5] P. Conrad: Epi-archimedean groups. Czechoslovak. Math. J. 24(99) (1974), 192–218. | MR | Zbl
[6] P. F. Conrad, M. R. Darnel and D. G. Nelson: Valuations of lattice-ordered groups. J. Algebra 192 (1997), 380–411. | MR
[7] M. Darnel: Theory of Lattice-Ordered Groups. Pure and Applied Mathematics, Vol. 187. Dekker, New York, 1995. | MR
[8] R. Engelking: General Topology. Heldermann, Berlin, 1989. | MR | Zbl
[9] L. Gillman and M. Jerison: Rings of Continuous Functions. D. Van Nostrand Publ., , 1960. | MR
[10] A. Hager: Cozero fields. Confer. Sem. Mat. Univ. Bari. 175 (1980), 1–23. | MR | Zbl
[11] A. Hager: On inverse-closed subalgebras of $C(X)$. Proc. London Math. Soc. 3 (1969), 233–257. | MR | Zbl
[12] A. Hager: Real-valued functions on Alexandroff (zero-set) spaces. Comm. Math. Univ. Carolin. 16 (1975), 755–769. | MR | Zbl
[13] A. Hager and C. Kimber: Some examples of hyperarchimedean lattice-ordered groups. Fund. Math. 182 (2004), 107–122. | DOI | MR
[14] A. Hager, C. Kimber and W. McGovern: Least integer closed groups. Ordered Alg. Structure (2002), 245–260. | MR
[15] A. W. Hager and J. Martinez: Singular archimedean lattice-ordered groups. Algebra Univ. 40 (1998), 119–147. | DOI | MR
[16] A. Hager and L. Robertson: Representing and ringifying a Riesz space. Sympos. Math. 21 (1977), 411–431. | MR
[17] M. Henriksen and D. Johnson: On the structure of a class of archimedean lattice-ordered algebras. Fund. Math. 50 (1961), 73–94. | DOI | MR
[18] M. Henriksen, J. Isbell and D. Johnson: Residue class fields of lattice-ordered algebras. Fund. Math. 50 (1961), 107–117. | DOI | MR
[19] C. Kimber and W. McGovern: Bounded away lattice-ordered groups. Manuscript, 1998.
[20] J. R. Porter and R. G. Woods: Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag, , 1988. | MR
[21] K. Yosida: On the representation of the vector lattice. Proc. Imp. Acad. Tokyo 18 (1942), 339–343. | MR | Zbl