Unique $a$-closure for some $\ell$-groups of rational valued functions
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 409-421
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Usually, an abelian $\ell $-group, even an archimedean $\ell $-group, has a relatively large infinity of distinct $a$-closures. Here, we find a reasonably large class with unique and perfectly describable $a$-closure, the class of archimedean $\ell $-groups with weak unit which are “$\mathbb Q$-convex”. ($\mathbb Q$ is the group of rationals.) Any $C(X,\mathbb Q)$ is $\mathbb Q$-convex and its unique $a$-closure is the Alexandroff algebra of functions on $X$ defined from the clopen sets; this is sometimes $C(X)$.
Usually, an abelian $\ell $-group, even an archimedean $\ell $-group, has a relatively large infinity of distinct $a$-closures. Here, we find a reasonably large class with unique and perfectly describable $a$-closure, the class of archimedean $\ell $-groups with weak unit which are “$\mathbb Q$-convex”. ($\mathbb Q$ is the group of rationals.) Any $C(X,\mathbb Q)$ is $\mathbb Q$-convex and its unique $a$-closure is the Alexandroff algebra of functions on $X$ defined from the clopen sets; this is sometimes $C(X)$.
Classification : 06F20, 06F25, 20F60, 54C30, 54F65
Keywords: archimedean lattice-ordered group; $a$-closure; rational-valued functions; zero-dimensional space
@article{CMJ_2005_55_2_a10,
     author = {Hager, Anthony W. and Kimber, Chawne M. and McGovern, Warren W.},
     title = {Unique $a$-closure for some $\ell$-groups of rational valued functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {409--421},
     year = {2005},
     volume = {55},
     number = {2},
     mrnumber = {2137147},
     zbl = {1081.06020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a10/}
}
TY  - JOUR
AU  - Hager, Anthony W.
AU  - Kimber, Chawne M.
AU  - McGovern, Warren W.
TI  - Unique $a$-closure for some $\ell$-groups of rational valued functions
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 409
EP  - 421
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a10/
LA  - en
ID  - CMJ_2005_55_2_a10
ER  - 
%0 Journal Article
%A Hager, Anthony W.
%A Kimber, Chawne M.
%A McGovern, Warren W.
%T Unique $a$-closure for some $\ell$-groups of rational valued functions
%J Czechoslovak Mathematical Journal
%D 2005
%P 409-421
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a10/
%G en
%F CMJ_2005_55_2_a10
Hager, Anthony W.; Kimber, Chawne M.; McGovern, Warren W. Unique $a$-closure for some $\ell$-groups of rational valued functions. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 409-421. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a10/

[1] M. Anderson and T. Feil: Lattice-Ordered Groups. Reidel, Dordrecht, 1989. | MR

[2] E. Aron and A. Hager: Convex vector lattices and $\ell $-algebras. Topology Appl. 12 (1981), 1–10. | DOI | MR

[3] A. Bigard, K. Keimel and S. Wolfenstein: Groupes et anneaux reticules. Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR

[4] P. Conrad: Archimedean extensions of lattice-ordered groups. J. Indian Math. Soc. 30 (1966), 131–160. | MR | Zbl

[5] P. Conrad: Epi-archimedean groups. Czechoslovak. Math.  J. 24(99) (1974), 192–218. | MR | Zbl

[6] P. F. Conrad, M. R. Darnel and D. G. Nelson: Valuations of lattice-ordered groups. J. Algebra 192 (1997), 380–411. | MR

[7] M. Darnel: Theory of Lattice-Ordered Groups. Pure and Applied Mathematics, Vol.  187. Dekker, New York, 1995. | MR

[8] R. Engelking: General Topology. Heldermann, Berlin, 1989. | MR | Zbl

[9] L. Gillman and M. Jerison: Rings of Continuous Functions. D.  Van Nostrand Publ., , 1960. | MR

[10] A. Hager: Cozero fields. Confer. Sem. Mat. Univ. Bari. 175 (1980), 1–23. | MR | Zbl

[11] A. Hager: On inverse-closed subalgebras of  $C(X)$. Proc. London Math. Soc. 3 (1969), 233–257. | MR | Zbl

[12] A. Hager: Real-valued functions on Alexandroff (zero-set) spaces. Comm. Math. Univ. Carolin. 16 (1975), 755–769. | MR | Zbl

[13] A. Hager and C. Kimber: Some examples of hyperarchimedean lattice-ordered groups. Fund. Math. 182 (2004), 107–122. | DOI | MR

[14] A. Hager, C. Kimber and W. McGovern: Least integer closed groups. Ordered Alg. Structure (2002), 245–260. | MR

[15] A. W. Hager and J. Martinez: Singular archimedean lattice-ordered groups. Algebra Univ. 40 (1998), 119–147. | DOI | MR

[16] A. Hager and L. Robertson: Representing and ringifying a Riesz space. Sympos. Math. 21 (1977), 411–431. | MR

[17] M. Henriksen and D. Johnson: On the structure of a class of archimedean lattice-ordered algebras. Fund. Math. 50 (1961), 73–94. | DOI | MR

[18] M. Henriksen, J. Isbell and D. Johnson: Residue class fields of lattice-ordered algebras. Fund. Math. 50 (1961), 107–117. | DOI | MR

[19] C. Kimber and W. McGovern: Bounded away lattice-ordered groups. Manuscript, 1998.

[20] J. R. Porter and R. G. Woods: Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag, , 1988. | MR

[21] K. Yosida: On the representation of the vector lattice. Proc. Imp. Acad. Tokyo 18 (1942), 339–343. | MR | Zbl