Extensions of $GM$-rings
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 273-281
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is shown that a ring $R$ is a $GM$-ring if and only if there exists a complete orthogonal set $\lbrace e_1,\cdots ,e_n\rbrace $ of idempotents such that all $e_iRe_i$ are $GM$-rings. We also investigate $GM$-rings for Morita contexts, module extensions and power series rings.
It is shown that a ring $R$ is a $GM$-ring if and only if there exists a complete orthogonal set $\lbrace e_1,\cdots ,e_n\rbrace $ of idempotents such that all $e_iRe_i$ are $GM$-rings. We also investigate $GM$-rings for Morita contexts, module extensions and power series rings.
Classification : 16E50, 16S50, 16U60, 16U99
Keywords: $GM$-ring; module extension; power series ring
@article{CMJ_2005_55_2_a0,
     author = {Chen, Huanyin and Chen, Miaosen},
     title = {Extensions of $GM$-rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {273--281},
     year = {2005},
     volume = {55},
     number = {2},
     mrnumber = {2137137},
     zbl = {1081.16016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a0/}
}
TY  - JOUR
AU  - Chen, Huanyin
AU  - Chen, Miaosen
TI  - Extensions of $GM$-rings
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 273
EP  - 281
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a0/
LA  - en
ID  - CMJ_2005_55_2_a0
ER  - 
%0 Journal Article
%A Chen, Huanyin
%A Chen, Miaosen
%T Extensions of $GM$-rings
%J Czechoslovak Mathematical Journal
%D 2005
%P 273-281
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a0/
%G en
%F CMJ_2005_55_2_a0
Chen, Huanyin; Chen, Miaosen. Extensions of $GM$-rings. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 273-281. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a0/

[1] V. P. Camillo and H. P. Yu: Exchange rings, units and idempotents. Comm. Algebra 22 (1994), 4737–4749. | DOI | MR

[2] H. Chen: Exchange rings with artinian primitive factors. Algebras Represent. Theory 2 (1999), 201–207. | MR | Zbl

[3] H. Chen: Rings with many idempotents. Internat. J.  Math. Math. Sci. 22 (1999), 547–558. | DOI | MR | Zbl

[4] H. Chen: Units, idempotents and stable range conditions. Comm. Algebra 29 (2001), 703–717. | DOI | MR | Zbl

[5] H. Chen: Stable ranges for Morita contexts. SEA  Bull. Math. 25 (2001), 209–216. | DOI | MR | Zbl

[6] K. R. Goodearl and P. Menal: Stable range one for rings with many units. J.  Pure Appl. Algebra 54 (1988), 261–287. | DOI | MR

[7] A. Haghany: Hopficity and co-hopficity for Morita contexts. Comm. Algebra 27 (1999), 477–492. | DOI | MR | Zbl

[8] J. Han and W. K. Nicholson: Extensions of clean rings. Comm. Algebra 29 (2001), 2589–2595. | DOI | MR

[9] M. Henriksen: Two classes of rings generated by their units. J.  Algebra 31 (1974), 182–193. | DOI | MR | Zbl

[10] Y. Hirano: Another triangular matrix ring having Auslander-Gorenstein property. Comm. Algebra 29 (2001), 719–735. | DOI | MR | Zbl

[11] P. Menal: On $\pi $-regular rings whose primitive factor rings are artinian. J.  Pure. Appl. Algebra 20 (1981), 71–78. | DOI | MR | Zbl

[12] W. K. Nicholson: Strongly clean rings and Fitting’s lemma. Comm. Algebra 27 (1999), 3583–3592. | DOI | MR | Zbl

[13] W. K. Nicholson and K. Varadarjan: Countable linear transformations are clean. Proc. Amer. Math. Soc. 126 (1998), 61–64. | DOI | MR

[14] E. Pardo: Comparability, separativity, and exchange rings. Comm. Algebra 24 (1996), 2915–2929. | DOI | MR | Zbl

[15] T. Wu and W. Tong: Stable range condition and cancellation of modules. Pitman Res. Notes Math. 346 (1996), 98–104. | MR

[16] H. P. Yu: On the structure of exchange rings. Comm. Algebra 25 (1997), 661–670. | DOI | MR | Zbl