Extensions of $GM$-rings
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 273-281
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It is shown that a ring $R$ is a $GM$-ring if and only if there exists a complete orthogonal set $\lbrace e_1,\cdots ,e_n\rbrace $ of idempotents such that all $e_iRe_i$ are $GM$-rings. We also investigate $GM$-rings for Morita contexts, module extensions and power series rings.
It is shown that a ring $R$ is a $GM$-ring if and only if there exists a complete orthogonal set $\lbrace e_1,\cdots ,e_n\rbrace $ of idempotents such that all $e_iRe_i$ are $GM$-rings. We also investigate $GM$-rings for Morita contexts, module extensions and power series rings.
Classification :
16E50, 16S50, 16U60, 16U99
Keywords: $GM$-ring; module extension; power series ring
Keywords: $GM$-ring; module extension; power series ring
@article{CMJ_2005_55_2_a0,
author = {Chen, Huanyin and Chen, Miaosen},
title = {Extensions of $GM$-rings},
journal = {Czechoslovak Mathematical Journal},
pages = {273--281},
year = {2005},
volume = {55},
number = {2},
mrnumber = {2137137},
zbl = {1081.16016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a0/}
}
Chen, Huanyin; Chen, Miaosen. Extensions of $GM$-rings. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 273-281. http://geodesic.mathdoc.fr/item/CMJ_2005_55_2_a0/