Keywords: measurable selectors; upper semi-continuous maps; point of continuity property
@article{CMJ_2005_55_1_a9,
author = {Hansell, R. W. and Oncina, L.},
title = {Generalized first class selectors for upper semi-continuous set-valued maps in {Banach} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {145--155},
year = {2005},
volume = {55},
number = {1},
mrnumber = {2121662},
zbl = {1081.46016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a9/}
}
TY - JOUR AU - Hansell, R. W. AU - Oncina, L. TI - Generalized first class selectors for upper semi-continuous set-valued maps in Banach spaces JO - Czechoslovak Mathematical Journal PY - 2005 SP - 145 EP - 155 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a9/ LA - en ID - CMJ_2005_55_1_a9 ER -
Hansell, R. W.; Oncina, L. Generalized first class selectors for upper semi-continuous set-valued maps in Banach spaces. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 145-155. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a9/
[1] G. Gruenhage: A note on Gul’ko compact spaces. Proc. Amer. Math. Soc. 100 (1987), 371–376. | MR | Zbl
[2] G. Koumoullis: A generalization of functions of the first class. Topology Appl. 50 (1993), 217–239. | DOI | MR | Zbl
[3] W. R. Hansell: First class selectors for upper semi-continuous multifunctions. J. Funct. Anal. 75 (1987), 382–395. | DOI | MR | Zbl
[4] R. W. Hansell: Descriptive sets and the topology of nonseparable Banach spaces. Serdica Math. J. 27 (2001), 1–66. | MR | Zbl
[5] R. W. Hansell: First class functions with values in nonseparable spaces. Constantin Carathéodory: An International Tribute, Vols. I, II, World Sci. Publishing, Teaneck, 1991, pp. 461–475. | MR | Zbl
[6] R. W. Hansell: Descriptive Topology. Recent Progress in General Topology. M. Husec and J. van Mill (eds.), Elsevier Science Publishers, , 1992. | MR
[7] R. W. Hansell, J. E. Jayne, and M. Talagrand: First class selector for weakly upper semi-continuous multivalued maps in Banach spaces. J. Reine Angew. Math. 361 (1985), 201–220. | MR
[8] J. E. Jayne, J. Orihuela, A. J. Pallarés, and G. Vera: $\sigma $-fragmentability of multivalued maps and selection theorems. J. Funct. Anal. 117 (1993), 243–273. | DOI | MR
[9] J. E. Jayne, C. A. Rogers: Borel selectors for upper semi-continuous set-valued maps. Acta. Math. 155 (1985), 41–79. | DOI | MR
[10] I. Namioka: Radon-Nikodým compact spaces and fragmentability. Mathematika 34 (1989), 258–281. | MR
[11] L. Oncina: Descriptive Banach spaces and Eberlein compacta. Doctoral Thesis, Universidad de Murcia, 1999.
[12] N. K. Ribarska: Internal characterization of fragmentable spaces. Mathematika 34 (1987), 243–257. | DOI | MR | Zbl
[13] V. V. Srivatsa: Baire class 1 selectors for upper-semicontinuous set-valued maps. Trans. Amer. Math. Soc. 337 (1993), 609–624. | MR | Zbl
[14] M. Talagrand: Pettis Integral and Measure Theory. Mem. Amer. Math. Soc. 307, Providence, 1984, pp. 224. | MR | Zbl