Keywords: Morita theorem; quotient category; equivalent categories; adjoint functors
@article{CMJ_2005_55_1_a8,
author = {Breaz, Simion},
title = {A {Morita} type theorem for a sort of quotient categories},
journal = {Czechoslovak Mathematical Journal},
pages = {133--144},
year = {2005},
volume = {55},
number = {1},
mrnumber = {2121661},
zbl = {1081.16010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a8/}
}
Breaz, Simion. A Morita type theorem for a sort of quotient categories. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a8/
[1] U. Albrecht: Finite extensions of $A$-solvable abelian groups. J. Pure Appl. Algebra 158 (2001), 1–14. | DOI | MR | Zbl
[2] U. Albrecht: Quasi-decompositions of abelian groups and Baer’s Lemma. Rocky Mountain J. Math. 22 (1992), 1227–1241. | DOI | MR
[3] U. Albrecht and P. Goeters: Almost flat abelian groups. Rocky Mountain J. Math. 25 (1995), 827–842. | DOI | MR
[4] F. Anderson and K. Fuller: Rings and Categories of Modules. Graduate Texts in Mathematics 13. Springer-Verlag, , 1973. | MR
[5] D. M. Arnold: Finite Rank Torsion Free Abelian Groups and Rings. Lecture Notes in Mathematics Vol. 931. Springer-Verlag, , 1982. | MR
[6] S. Breaz: Almost-flat modules. Czechoslovak Math. J. 53(128) (2003), 479–489. | DOI | MR | Zbl
[7] S. Breaz and C. Modoi: On a quotient category. Studia Univ. Babeş-Bolyai Math. 47 (2002), 17–29. | MR
[8] P. Gabriel: Des catégories abelienes. Bull. Soc. Math. France 90 (1962), 323–448. | DOI | MR
[9] N. Popescu and L. Popescu: Theory of Categories. Editura Academiei, Bucureşti, 1979.
[10] B. Stenström: Rings of Quotients. Springer-Verlag, , 1975. | MR
[11] C. Vinsonhaler: Torsion free abelian groups quasi-projective over their endomorphism rings II. Pac. J. Math. 74 (1978), 261–265. | MR | Zbl
[12] C. Vinsonhaler and W. Wickless: Torsion free abelian groups quasi-projective over their endomorphism rings. Pacific J. Math. 68 (1977), 527–535. | DOI | MR
[13] E. Walker: Quotient categories and quasi-isomorphisms of abelian groups. In: Proc. Colloq. Abelian Groups, Budapest (1964), 1964, pp. 147–162. | MR | Zbl
[14] R. Wisbauer: Foundations of Module and Ring Theory. Gordon and Breach, Reading, 1991. | MR | Zbl