Orbits connecting singular points in the plane
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 125-132
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper concerns the global structure of planar systems. It is shown that if a positively bounded system with two singular points has no closed orbits, the set of all bounded solutions is compact and simply connected. Also it is shown that for such a system the existence of connecting orbits is tightly related to the behavior of homoclinic orbits. A necessary and sufficient condition for the existence of connecting orbits is given. The number of connecting orbits is also discussed.
This paper concerns the global structure of planar systems. It is shown that if a positively bounded system with two singular points has no closed orbits, the set of all bounded solutions is compact and simply connected. Also it is shown that for such a system the existence of connecting orbits is tightly related to the behavior of homoclinic orbits. A necessary and sufficient condition for the existence of connecting orbits is given. The number of connecting orbits is also discussed.
Classification : 34C11, 34C35, 34C37, 37C29
Keywords: connecting orbit; homoclinic orbit; positively bounded system
@article{CMJ_2005_55_1_a7,
     author = {Ding, Changming},
     title = {Orbits connecting singular points in the plane},
     journal = {Czechoslovak Mathematical Journal},
     pages = {125--132},
     year = {2005},
     volume = {55},
     number = {1},
     mrnumber = {2121660},
     zbl = {1081.37002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a7/}
}
TY  - JOUR
AU  - Ding, Changming
TI  - Orbits connecting singular points in the plane
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 125
EP  - 132
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a7/
LA  - en
ID  - CMJ_2005_55_1_a7
ER  - 
%0 Journal Article
%A Ding, Changming
%T Orbits connecting singular points in the plane
%J Czechoslovak Mathematical Journal
%D 2005
%P 125-132
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a7/
%G en
%F CMJ_2005_55_1_a7
Ding, Changming. Orbits connecting singular points in the plane. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 125-132. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a7/

[1] C. C. Conley: Isolated invariant sets and Morse index. (Conf. Board Math. Sci., No 38), Amer. Math. Sci., Providence, 1978. | MR

[2] C. C. Conley and J. A. Smoller: Viscosity matrices for two-dimensional nonlinear hyperbolic system. Comm. Pure Appl. Math. 23 (1970), 867–884. | DOI | MR

[3] C. C. Conley and J. A. Smoller: The existence of heteroclinic orbits and applications. In: Dynamical Systems, Theory and Applications. Lecture Notes in Physics, Vol. 38, J.  Moser (ed.), Springer-Verlag, New York, 1975, pp. 551–524. | MR

[4] C. Ding: The homoclinic orbits in the Liénard plane. J.  Math. Anal. Appl. 191 (1995), 26–39. | DOI | MR | Zbl

[5] C. Ding: Connecting orbits of gradient-like systems in $R^n$. Acta Mathematica Sinica 43 (2000), 1115–1118.

[6] I. M. Gelfand: Some problems in the theory of quasilinear equations. Usp. Mat. Nauk. 14 (1959), 87–158. | MR

[7] P. Hartman: Ordinary Differential Equations. 2nd ed. Birkhäuser-Verlag, Boston, 1985. | MR

[8] H. Tusen: Orbits connecting singular points. Acta Mathematica Sinica 40 (1997), 551–558.

[9] H. Tusen: Some global properties in dynamical systems. PhD.  thesis, Inst. of Math., Academia Sinica, 1998.

[10] S. Yu: Isolating blocks and the existence of connecting orbits. Science in China (Series  A) 27 (1997), 298–301. | MR

[11] S. Yu: Orbits connecting critical points of differential equations depending on a parameter. J.  Math. Anal. Appl. 261 (2001), 282–288. | DOI | MR | Zbl

[12] S. Zhang and Z. Zheng: Global structure for a class dynamical systems. Chaos, Solitons and Fractals 11 (2000), 735–741. | DOI | MR

[13] C. Zhao and X. Wang: The existence and uniqueness of trajectories joining critical points for differential equations in  $R^3$. Chaos, Solitons and Fractals 12 (2001), 153–158. | MR