Keywords: connecting orbit; homoclinic orbit; positively bounded system
@article{CMJ_2005_55_1_a7,
author = {Ding, Changming},
title = {Orbits connecting singular points in the plane},
journal = {Czechoslovak Mathematical Journal},
pages = {125--132},
year = {2005},
volume = {55},
number = {1},
mrnumber = {2121660},
zbl = {1081.37002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a7/}
}
Ding, Changming. Orbits connecting singular points in the plane. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 125-132. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a7/
[1] C. C. Conley: Isolated invariant sets and Morse index. (Conf. Board Math. Sci., No 38), Amer. Math. Sci., Providence, 1978. | MR
[2] C. C. Conley and J. A. Smoller: Viscosity matrices for two-dimensional nonlinear hyperbolic system. Comm. Pure Appl. Math. 23 (1970), 867–884. | DOI | MR
[3] C. C. Conley and J. A. Smoller: The existence of heteroclinic orbits and applications. In: Dynamical Systems, Theory and Applications. Lecture Notes in Physics, Vol. 38, J. Moser (ed.), Springer-Verlag, New York, 1975, pp. 551–524. | MR
[4] C. Ding: The homoclinic orbits in the Liénard plane. J. Math. Anal. Appl. 191 (1995), 26–39. | DOI | MR | Zbl
[5] C. Ding: Connecting orbits of gradient-like systems in $R^n$. Acta Mathematica Sinica 43 (2000), 1115–1118.
[6] I. M. Gelfand: Some problems in the theory of quasilinear equations. Usp. Mat. Nauk. 14 (1959), 87–158. | MR
[7] P. Hartman: Ordinary Differential Equations. 2nd ed. Birkhäuser-Verlag, Boston, 1985. | MR
[8] H. Tusen: Orbits connecting singular points. Acta Mathematica Sinica 40 (1997), 551–558.
[9] H. Tusen: Some global properties in dynamical systems. PhD. thesis, Inst. of Math., Academia Sinica, 1998.
[10] S. Yu: Isolating blocks and the existence of connecting orbits. Science in China (Series A) 27 (1997), 298–301. | MR
[11] S. Yu: Orbits connecting critical points of differential equations depending on a parameter. J. Math. Anal. Appl. 261 (2001), 282–288. | DOI | MR | Zbl
[12] S. Zhang and Z. Zheng: Global structure for a class dynamical systems. Chaos, Solitons and Fractals 11 (2000), 735–741. | DOI | MR
[13] C. Zhao and X. Wang: The existence and uniqueness of trajectories joining critical points for differential equations in $R^3$. Chaos, Solitons and Fractals 12 (2001), 153–158. | MR