Keywords: dually residuated lattice ordered monoid; ideal; normal ideal
@article{CMJ_2005_55_1_a5,
author = {K\"uhr, Jan},
title = {Ideals of noncommutative $DR\ell$-monoids},
journal = {Czechoslovak Mathematical Journal},
pages = {97--111},
year = {2005},
volume = {55},
number = {1},
mrnumber = {2121658},
zbl = {1081.06017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a5/}
}
Kühr, Jan. Ideals of noncommutative $DR\ell$-monoids. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 97-111. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a5/
[1] A. Di Nola, G. Georgescu and A. Iorgulescu: Pseudo $BL$-algebras: Part I. Mult. Val. Logic 8 (2002), 673–714. | MR
[2] A. Dvurečenskij: On pseudo $MV$-algebras. Soft Comp. 5 (2001), 347–354. | DOI | MR
[3] A. Dvurečenskij: Pseudo $MV$-algebras are intervals in $\ell $-groups. J. Austral. Math. Soc. 72 (2002), 427–445. | DOI | MR
[4] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras. Mult. Val. Logic 6 (2001), 95–135. | MR
[5] G. Grätzer: General Lattice Theory. Birkhäuser-Verlag, Basel-Boston-Berlin, 1998. | MR
[6] I. Chajda: Congruence kernels in weakly regular varieties. Southeast Asian Bull. Math. 24 (2000), 15–18. | DOI | MR | Zbl
[7] I. Chajda, R. Halaš and J. Rachůnek: Ideals and congruences in generalized $MV$-algebras. Demonstratio Math. 33 (2000), 213–222. | DOI | MR
[8] T. Kovář: A general theory of dually residuated lattice ordered monoids. PhD. Thesis, Palacký Univ. Olomouc, 1996.
[9] J. Rachůnek: Prime ideals in autometrized algebras. Czechoslovak Math. J. 112 (1987), 65–69. | MR
[10] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255–273. | DOI | MR
[11] K. L. N. Swamy: Dually residuated lattice ordered semigroups I. Math. Ann. 159 (1965), 105–114. | DOI | MR
[12] K. L. N. Swamy: Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71–74. | DOI | MR | Zbl