Ideals of noncommutative $DR\ell$-monoids
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 97-111
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we introduce the concept of an ideal of a noncommutative dually residuated lattice ordered monoid and we show that congruence relations and certain ideals are in a one-to-one correspondence.
In this paper, we introduce the concept of an ideal of a noncommutative dually residuated lattice ordered monoid and we show that congruence relations and certain ideals are in a one-to-one correspondence.
Classification : 06D35, 06F05
Keywords: dually residuated lattice ordered monoid; ideal; normal ideal
@article{CMJ_2005_55_1_a5,
     author = {K\"uhr, Jan},
     title = {Ideals of noncommutative $DR\ell$-monoids},
     journal = {Czechoslovak Mathematical Journal},
     pages = {97--111},
     year = {2005},
     volume = {55},
     number = {1},
     mrnumber = {2121658},
     zbl = {1081.06017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a5/}
}
TY  - JOUR
AU  - Kühr, Jan
TI  - Ideals of noncommutative $DR\ell$-monoids
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 97
EP  - 111
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a5/
LA  - en
ID  - CMJ_2005_55_1_a5
ER  - 
%0 Journal Article
%A Kühr, Jan
%T Ideals of noncommutative $DR\ell$-monoids
%J Czechoslovak Mathematical Journal
%D 2005
%P 97-111
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a5/
%G en
%F CMJ_2005_55_1_a5
Kühr, Jan. Ideals of noncommutative $DR\ell$-monoids. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 97-111. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a5/

[1] A. Di Nola, G. Georgescu and A. Iorgulescu: Pseudo $BL$-algebras: Part  I. Mult. Val. Logic 8 (2002), 673–714. | MR

[2] A. Dvurečenskij: On pseudo $MV$-algebras. Soft Comp. 5 (2001), 347–354. | DOI | MR

[3] A. Dvurečenskij: Pseudo $MV$-algebras are intervals in $\ell $-groups. J.  Austral. Math. Soc. 72 (2002), 427–445. | DOI | MR

[4] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras. Mult. Val. Logic 6 (2001), 95–135. | MR

[5] G. Grätzer: General Lattice Theory. Birkhäuser-Verlag, Basel-Boston-Berlin, 1998. | MR

[6] I. Chajda: Congruence kernels in weakly regular varieties. Southeast Asian Bull. Math. 24 (2000), 15–18. | DOI | MR | Zbl

[7] I. Chajda, R. Halaš and J.  Rachůnek: Ideals and congruences in generalized $MV$-algebras. Demonstratio Math. 33 (2000), 213–222. | DOI | MR

[8] T. Kovář: A general theory of dually residuated lattice ordered monoids. PhD.  Thesis, Palacký Univ. Olomouc, 1996.

[9] J. Rachůnek: Prime ideals in autometrized algebras. Czechoslovak Math.  J. 112 (1987), 65–69. | MR

[10] J. Rachůnek: A non-commutative generalization of $MV$-algebras. Czechoslovak Math.  J. 52 (2002), 255–273. | DOI | MR

[11] K. L. N. Swamy: Dually residuated lattice ordered semigroups  I. Math. Ann. 159 (1965), 105–114. | DOI | MR

[12] K. L. N. Swamy: Dually residuated lattice ordered semigroups  III. Math. Ann. 167 (1966), 71–74. | DOI | MR | Zbl