Keywords: limit set of a set; attractor; quasi-attractor; hyperspace
@article{CMJ_2005_55_1_a4,
author = {Ding, Changming},
title = {The omega limit sets of subsets in a metric space},
journal = {Czechoslovak Mathematical Journal},
pages = {87--96},
year = {2005},
volume = {55},
number = {1},
mrnumber = {2121657},
zbl = {1081.37001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a4/}
}
Ding, Changming. The omega limit sets of subsets in a metric space. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 87-96. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a4/
[1] N. P. Bhatia and G. P. Szegö: Stability Theory of Dynamical Systems. Springer-Verlag, Berlin, 1970. | MR
[2] G. Butler and P. Waltmann: Persistence in dynamical systems. J. Differential Equations 63 (1986), 255–263. | DOI | MR
[3] C. C. Conley: The gradient structure of a flow: I. Ergod. Th. & Dynam. Sys. $8^*$ (1988), 11–26. | DOI | MR | Zbl
[4] C. C. Conley: Isolated invariant sets and Morse index. Conf. Board Math. Sci., No 38, Amer. Math. Sci., Providence, 1978. | MR
[5] C. C. Conley: Some abstract properties of the set of invariant sets of a flow. Illinois J. Math. 16 (1972), 663–668. | DOI | MR | Zbl
[6] J. K. Hale and P. Waltmann: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20 (1989), 388–395. | DOI | MR
[7] R. Moeckel: Some comments on “The gradient structure of a flow: I”. vol. $8^*$, Ergod. Th. & Dynam. Sys., 1988. | MR
[8] S. B. Nadler, Jr.: Continuum Theory: An Introduction. Marcel Dekker, New York-Basel-Hong Kong, 1992. | MR | Zbl
[9] T. Huang: Some global properties in dynamical systems. PhD. thesis, Inst. of Math., Academia Sinica, , 1998.