On multiplication groups of relatively free quasigroups isotopic to Abelian groups
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 61-86
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

If $Q$ is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group $\mathop {\mathrm Mlt}Q$ is a Frobenius group. Conversely, if $\mathop {\mathrm Mlt}Q$ is a Frobenius group, $Q$ a quasigroup, then $Q$ has to be isotopic to an Abelian group. If $Q$ is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup).
If $Q$ is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group $\mathop {\mathrm Mlt}Q$ is a Frobenius group. Conversely, if $\mathop {\mathrm Mlt}Q$ is a Frobenius group, $Q$ a quasigroup, then $Q$ has to be isotopic to an Abelian group. If $Q$ is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup).
Classification : 08B20, 20N05
Keywords: central quasigroups; $T$-quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups
@article{CMJ_2005_55_1_a3,
     author = {Dr\'apal, Ale\v{s}},
     title = {On multiplication groups of relatively free quasigroups isotopic to {Abelian} groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {61--86},
     year = {2005},
     volume = {55},
     number = {1},
     mrnumber = {2121656},
     zbl = {1081.20078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a3/}
}
TY  - JOUR
AU  - Drápal, Aleš
TI  - On multiplication groups of relatively free quasigroups isotopic to Abelian groups
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 61
EP  - 86
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a3/
LA  - en
ID  - CMJ_2005_55_1_a3
ER  - 
%0 Journal Article
%A Drápal, Aleš
%T On multiplication groups of relatively free quasigroups isotopic to Abelian groups
%J Czechoslovak Mathematical Journal
%D 2005
%P 61-86
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a3/
%G en
%F CMJ_2005_55_1_a3
Drápal, Aleš. On multiplication groups of relatively free quasigroups isotopic to Abelian groups. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 61-86. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a3/

[1] A.  Albert: Quasigroups  I. Trans. Amer. Math. Soc. 54 (1943), 507–519. | DOI | MR | Zbl

[2] V. D. Belousov: Balanced identities in quasigroups. Matem. sbornik (N.S.) 70 (1966), 55–97. (Russian) | MR | Zbl

[3] V. D.  Belousov: Osnovy teorii kvazigrupp i lup. Nauka, Moskva, 1967. | MR

[4] G. B.  Belyavskaya: $T$-quasigroups and the centre of a quasigroup. Matem. Issled. 111 (1989), 24–43. (Russian) | MR

[5] G. B.  Belyavskaya: Abelian quasigroups and $T$-quasigroups. Quasigroups and related systems 1 (1994), 1–7. | MR

[6] R. H.  Bruck: A Survey of Binary Systems. Springer-Verlag, 1971. | MR

[7] O.  Chein, H. O.  Pflugfelder and J. D. H.  Smith: Quasigroups and Loops: Theory and Applications. Heldermann, Berlin, 1990. | MR

[8] A.  Drápal: Multiplication groups of free loops  I. Czechoslovak Math.  J. 46 (1996), 121–131. | MR

[9] A.  Drápal: Multiplication groups of free loops  II. Czechoslovak Math.  J. 46 (1996), 201–220. | MR

[10] A.  Drápal: Multiplication groups of finite free loops that fix at most two points. J.  Algebra 235 (2001), 154–175. | DOI | MR

[11] A.  Drápal: Orbits of inner mapping groups. Monatsh. Math. 134 (2002), 191–206. | DOI | MR

[12] G.  Grätzer: Universal Algebra. Van Nostrand, Princeton, 1968. | MR

[13] J.  Ježek and T.  Kepka: Quasigroups isotopic to a group. Comment. Math. Univ. Carolin. 16 (1975), 59–76. | MR

[14] J.  Ježek: Normal subsets of quasigroups. Comment. Math. Univ. Carolin. 16 (1975), 77–85. | MR

[15] J.  Ježek: Univerzální algebra a teorie modelů. SNTL, Praha, 1976. | MR

[16] T.  Kepka and P.  Němec: $T$-quasigroups  I. Acta Univ. Carolin. Math. Phys. 12 (1971), 39–49. | MR

[17] T.  Kepka and P.  Němec: $T$-quasigroups  II. Acta Univ. Carolin. Math. Phys. 12 (1971), 31–49. | MR

[18] J. D. H.  Smith: Mal’cev Varieties. Springer, Berlin, 1976. | MR | Zbl