Integral averages and oscillation of second order sublinear differential equations
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 41-60
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

New oscillation criteria are given for the second order sublinear differential equation \[ [a(t)\psi (x(t))x^{\prime }(t)]^{\prime }+q(t)f(x(t))=0, \quad t\ge t_0>0, \] where $a\in C^1([t_0,\infty ))$ is a nonnegative function, $\psi , f\in C({\mathbb R})$ with $\psi (x)\ne 0$, $xf(x)/\psi (x)>0$ for $x\ne 0$, $\psi $, $f$ have continuous derivative on ${\mathbb R}\setminus \lbrace 0\rbrace $ with $[f(x)/\psi (x)]^{\prime }\ge 0$ for $x\ne 0$ and $q\in C([t_0,\infty ))$ has no restriction on its sign. This oscillation criteria involve integral averages of the coefficients $q$ and $a$ and extend known oscillation criteria for the equation $x^{\prime \prime }(t)+q(t)x(t)=0$.
New oscillation criteria are given for the second order sublinear differential equation \[ [a(t)\psi (x(t))x^{\prime }(t)]^{\prime }+q(t)f(x(t))=0, \quad t\ge t_0>0, \] where $a\in C^1([t_0,\infty ))$ is a nonnegative function, $\psi , f\in C({\mathbb R})$ with $\psi (x)\ne 0$, $xf(x)/\psi (x)>0$ for $x\ne 0$, $\psi $, $f$ have continuous derivative on ${\mathbb R}\setminus \lbrace 0\rbrace $ with $[f(x)/\psi (x)]^{\prime }\ge 0$ for $x\ne 0$ and $q\in C([t_0,\infty ))$ has no restriction on its sign. This oscillation criteria involve integral averages of the coefficients $q$ and $a$ and extend known oscillation criteria for the equation $x^{\prime \prime }(t)+q(t)x(t)=0$.
Classification : 34C10, 34C15, 34C29
Keywords: oscillation; sublinear differential equation; integral averages
@article{CMJ_2005_55_1_a2,
     author = {Manojlovi\'c, Jelena V.},
     title = {Integral averages and oscillation of second order sublinear differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {41--60},
     year = {2005},
     volume = {55},
     number = {1},
     mrnumber = {2121655},
     zbl = {1081.34032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a2/}
}
TY  - JOUR
AU  - Manojlović, Jelena V.
TI  - Integral averages and oscillation of second order sublinear differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 41
EP  - 60
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a2/
LA  - en
ID  - CMJ_2005_55_1_a2
ER  - 
%0 Journal Article
%A Manojlović, Jelena V.
%T Integral averages and oscillation of second order sublinear differential equations
%J Czechoslovak Mathematical Journal
%D 2005
%P 41-60
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a2/
%G en
%F CMJ_2005_55_1_a2
Manojlović, Jelena V. Integral averages and oscillation of second order sublinear differential equations. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 41-60. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a2/

[1] B. Ayanlar and A. Tiryaki: Oscillation theorems for nonlinear second-order differential equations. Comput. Math. Appl. 44 (2002), 529–538. | DOI | MR

[2] Y. Chen: On the oscillation of nonlinear second order equations. J.  South China Normal Univ. Natur. Sci. Ed. 2 (1986), 99–103. | MR

[3] S. R. Grace and B. S. Lalli: On the second order nonlinear oscillations. Bull. Inst. Math. Acad. Sinica 15 (1987), 297–309. | MR

[4] S. R. Grace: Oscillation theorems for second order nonlinear differential equations with damping. Math. Nachr. 141 (1989), 117–127. | DOI | MR | Zbl

[5] S. R. Grace and B. S. Lalli: Integral averaging techniques for the oscillation of second order nonlinear differential equations. J.  Math. Anal. and Appl. 149 (1990), 277–311. | DOI | MR

[6] S R. Grace: Oscillation theorems for nonlinear differential equations of second order. J.  Math. Anal. and Appl. 171 (1992), 220–241. | DOI | MR | Zbl

[7] M. Kirane and Y. V. Rogovchenko: Oscillation results for a second order damped differential equation with nonmonotonous nonlinearity. J.  Math. Anal. Appl. 250 (2000), 118–138. | DOI | MR

[8] T. Kura: Oscillation theorems for second order nonlinear differential equations. Proc. Amer. Math. Soc. 84 (1982), 535–538. | DOI | MR

[9] M. K. Kwong and J. S. W. Wong: On an oscillation theorem of Belohorec. SIAM J.  Math. Anal. 14 (1983), 474–476. | DOI | MR

[10] H. J. Li and C. C. Yeh: Oscillation of second order sublinear differential equations. Dynamic Systems Appl. 6 (1997), 529–534. | MR

[11] J. V. Manojlović: Oscillation criteria for second order sublinear differential equation. Math. Comp. Modelling 30 (1999), 109–119. | DOI | MR

[12] J. V. Manojlović: Oscillation criteria for second order sublinear differential equation. Computers and Mathematics with Applications 39 (2000), 161–172. | DOI

[13] J. V. Manojlović: Integral averages and oscillation of second order nonlinear differential equations. Computers and Mathematics with Applications 41 (2001), 1521–1534. | DOI | MR

[14] Ch. G. Philos: Oscillation of sublinear differential equations of second order. Nonlinear Anal. 7 (1983), 1071–1080. | DOI | MR | Zbl

[15] Ch. G. Philos: On second order sublinear oscillation. Aequationes Math. 27 (1984), 242–254. | DOI | MR | Zbl

[16] Ch. G. Philos: Integral averaging techniques for the oscillation of second order sublinear ordinary differential equations. J.  Austral. Math. Soc. (Series  A) 40 (1986), 111–130. | DOI | MR | Zbl

[17] Ch. G. Philos: Oscillation theorems for linear differential equations of second order. Arch. Math. (Basel) 53 (1989), 482–492. | DOI | MR | Zbl

[18] Ch. G. Philos: Integral averages and oscillation of second order sublinear differential equations. Diff. Integ. Equat. 4 (1991), 205–213. | MR | Zbl

[19] J. Yan: A note on second order sublinear oscillation theorems. J.  Math. Anal. and Appl. 104 (1984), 103–106. | DOI | MR | Zbl

[20] J. S. W. Wong: An oscillation criterion for second order sublinear differential equations. Conf. Proc. Canad. Math. Soc. 8 (1987), 299–302. | MR | Zbl

[21] J. S. W. Wong and C. C. Yeh: An oscillation criterion for second order sublinear differential equations. J.  Math. Anal. Appl. 171 (1992), 346–351. | DOI | MR

[22] J. S. W. Wong: Oscillation criteria for second order nonlinear differential equations involving general means. J.  Math. Anal. Appl. 247 (2000), 489–505. | DOI | MR | Zbl