Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 237-253
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consider the forced higher-order nonlinear neutral functional differential equation \[ \frac{{\mathrm d}^n}{{\mathrm d}t^n}[x(t)+C(t) x(t-\tau )]+\sum ^m_{i=1} Q_i(t)f_i(x(t-\sigma _i))=g(t), \quad t\ge t_0, \] where $n, m \ge 1$ are integers, $\tau , \sigma _i\in {\mathbb{R}}^+ =[0, \infty )$, $C, Q_i, g\in C([t_0, \infty ), {\mathbb{R}})$, $f_i\in C(\mathbb{R}, \mathbb{R})$, $(i=1,2,\dots ,m)$. Some sufficient conditions for the existence of a nonoscillatory solution of above equation are obtained for general $Q_i(t)$ $(i=1,2,\dots ,m)$ and $g(t)$ which means that we allow oscillatory $Q_i(t)$ $(i=1,2,\dots ,m)$ and $g(t)$. Our results improve essentially some known results in the references.
Consider the forced higher-order nonlinear neutral functional differential equation \[ \frac{{\mathrm d}^n}{{\mathrm d}t^n}[x(t)+C(t) x(t-\tau )]+\sum ^m_{i=1} Q_i(t)f_i(x(t-\sigma _i))=g(t), \quad t\ge t_0, \] where $n, m \ge 1$ are integers, $\tau , \sigma _i\in {\mathbb{R}}^+ =[0, \infty )$, $C, Q_i, g\in C([t_0, \infty ), {\mathbb{R}})$, $f_i\in C(\mathbb{R}, \mathbb{R})$, $(i=1,2,\dots ,m)$. Some sufficient conditions for the existence of a nonoscillatory solution of above equation are obtained for general $Q_i(t)$ $(i=1,2,\dots ,m)$ and $g(t)$ which means that we allow oscillatory $Q_i(t)$ $(i=1,2,\dots ,m)$ and $g(t)$. Our results improve essentially some known results in the references.
Classification : 34K11, 34K15, 34K40
Keywords: neutral differential equations; nonoscillatory solutions
@article{CMJ_2005_55_1_a17,
     author = {Zhou, Yong and Zhang, B. G. and Huang, Y. Q.},
     title = {Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {237--253},
     year = {2005},
     volume = {55},
     number = {1},
     mrnumber = {2121670},
     zbl = {1081.34068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a17/}
}
TY  - JOUR
AU  - Zhou, Yong
AU  - Zhang, B. G.
AU  - Huang, Y. Q.
TI  - Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 237
EP  - 253
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a17/
LA  - en
ID  - CMJ_2005_55_1_a17
ER  - 
%0 Journal Article
%A Zhou, Yong
%A Zhang, B. G.
%A Huang, Y. Q.
%T Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations
%J Czechoslovak Mathematical Journal
%D 2005
%P 237-253
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a17/
%G en
%F CMJ_2005_55_1_a17
Zhou, Yong; Zhang, B. G.; Huang, Y. Q. Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 237-253. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a17/

[1] R. P. Agarwal, S. R.  Grace and D.  O’Regan: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic Publishers, , 2000. | MR

[2] R. P.  Agarwal, S. R.  Grace and D.  O’Regan: Oscillation criteria for certain $n$th  order differential equations with deviating arguments. J.  Math. Anal. Appl. 262 (2001), 601–622. | DOI | MR

[3] R. P.  Agarwal and S. R.  Grace: The oscillation of higher-order differential equations with deviating arguments. Computers Math. Applied 38 (1999), 185–190. | DOI | MR

[4] M. P.  Chen, J. S.  Yu and Z. C.  Wang: Nonoscillatory solutions of neutral delay differential equations. Bull. Austral. Math. Soc. 48 (1993), 475–483. | DOI | MR

[5] L. H.  Erbe, Q. K.  Kong and B. G.  Zhang: Oscillation Theory for Functional Differential equations. Marcel Dekker, New York, 1995. | MR

[6] I.  Gyori and G.  Ladas: Oscillation Theory of Delay Differential Equations with Applications. Oxford Univ. Press, London, 1991. | MR

[7] J. R.  Graef, B.  Yang and B. G.  Zhang: Existence of nonoscillatory and oscillatory solutions of neutral differential equations with positive and negative coefficients. Math. Bohemica 124 (1999), 87–102. | MR

[8] M. R. S.  Kulenovic and S.  Hadziomerspahic: Existence of nonoscillatory solution of second order linear neutral delay equation. J.  Math. Anal. Appl. 228 (1998), 436–448. | DOI | MR

[9] H. A. El-Morshedy and K.  Gopalsamy: Nonoscillation, oscillation and convergence of a class of neutral equations. Nonlinear Anal. 40 (2000), 173–183. | DOI | MR

[10] C. H.  Ou and J. S. W.  Wong: Forced oscillation of $n$th-order functional differential equations. J.  Math. Anal. Appl. 262 (2001), 722–732. | DOI | MR

[11] S.  Tanaka: Existence of positive solutions for a class of higher order neutral differential equations. Czechoslovak Math.  J. 51 (2001), 573–583. | DOI | MR

[12] N.  Parhi and R. N.  Rath: Oscillation criteria for forced first order neutral differential equations with variable coefficients. J.  Math. Anal. Appl. 256 (2001), 525–241. | DOI | MR

[13] B. G.  Zhang and B.  Yang: New approach of studying the oscillation of neutral differential equations. Funkcial Ekvac. 41 (1998), 79–89. | MR

[14] Yong Zhou: Oscillation of neutral functional differential equations. Acta Math. Hungar. 86 (2000), 205–212. | DOI | MR

[15] Yong Zhou and B. G.  Zhang: Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients. Appl. Math. Lett. 15 (2002), 867–874. | DOI | MR