Keywords: neutral differential equations; nonoscillatory solutions
@article{CMJ_2005_55_1_a17,
author = {Zhou, Yong and Zhang, B. G. and Huang, Y. Q.},
title = {Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {237--253},
year = {2005},
volume = {55},
number = {1},
mrnumber = {2121670},
zbl = {1081.34068},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a17/}
}
TY - JOUR AU - Zhou, Yong AU - Zhang, B. G. AU - Huang, Y. Q. TI - Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations JO - Czechoslovak Mathematical Journal PY - 2005 SP - 237 EP - 253 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a17/ LA - en ID - CMJ_2005_55_1_a17 ER -
%0 Journal Article %A Zhou, Yong %A Zhang, B. G. %A Huang, Y. Q. %T Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations %J Czechoslovak Mathematical Journal %D 2005 %P 237-253 %V 55 %N 1 %U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a17/ %G en %F CMJ_2005_55_1_a17
Zhou, Yong; Zhang, B. G.; Huang, Y. Q. Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 237-253. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a17/
[1] R. P. Agarwal, S. R. Grace and D. O’Regan: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic Publishers, , 2000. | MR
[2] R. P. Agarwal, S. R. Grace and D. O’Regan: Oscillation criteria for certain $n$th order differential equations with deviating arguments. J. Math. Anal. Appl. 262 (2001), 601–622. | DOI | MR
[3] R. P. Agarwal and S. R. Grace: The oscillation of higher-order differential equations with deviating arguments. Computers Math. Applied 38 (1999), 185–190. | DOI | MR
[4] M. P. Chen, J. S. Yu and Z. C. Wang: Nonoscillatory solutions of neutral delay differential equations. Bull. Austral. Math. Soc. 48 (1993), 475–483. | DOI | MR
[5] L. H. Erbe, Q. K. Kong and B. G. Zhang: Oscillation Theory for Functional Differential equations. Marcel Dekker, New York, 1995. | MR
[6] I. Gyori and G. Ladas: Oscillation Theory of Delay Differential Equations with Applications. Oxford Univ. Press, London, 1991. | MR
[7] J. R. Graef, B. Yang and B. G. Zhang: Existence of nonoscillatory and oscillatory solutions of neutral differential equations with positive and negative coefficients. Math. Bohemica 124 (1999), 87–102. | MR
[8] M. R. S. Kulenovic and S. Hadziomerspahic: Existence of nonoscillatory solution of second order linear neutral delay equation. J. Math. Anal. Appl. 228 (1998), 436–448. | DOI | MR
[9] H. A. El-Morshedy and K. Gopalsamy: Nonoscillation, oscillation and convergence of a class of neutral equations. Nonlinear Anal. 40 (2000), 173–183. | DOI | MR
[10] C. H. Ou and J. S. W. Wong: Forced oscillation of $n$th-order functional differential equations. J. Math. Anal. Appl. 262 (2001), 722–732. | DOI | MR
[11] S. Tanaka: Existence of positive solutions for a class of higher order neutral differential equations. Czechoslovak Math. J. 51 (2001), 573–583. | DOI | MR
[12] N. Parhi and R. N. Rath: Oscillation criteria for forced first order neutral differential equations with variable coefficients. J. Math. Anal. Appl. 256 (2001), 525–241. | DOI | MR
[13] B. G. Zhang and B. Yang: New approach of studying the oscillation of neutral differential equations. Funkcial Ekvac. 41 (1998), 79–89. | MR
[14] Yong Zhou: Oscillation of neutral functional differential equations. Acta Math. Hungar. 86 (2000), 205–212. | DOI | MR
[15] Yong Zhou and B. G. Zhang: Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients. Appl. Math. Lett. 15 (2002), 867–874. | DOI | MR