On vector lattices of elementary Carathéodory functions
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 223-236
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we deal with the vector lattice $C(B)$ of all elementary Carathéodory functions corresponding to a generalized Boolean algebra $B$.
In this paper we deal with the vector lattice $C(B)$ of all elementary Carathéodory functions corresponding to a generalized Boolean algebra $B$.
Classification : 06F20, 46A40
Keywords: generalized Boolean algebra; elementary Carathéodory functions; Specker lattice ordered group; $(\alpha, \beta)$-distributivity; complete distributivity
@article{CMJ_2005_55_1_a16,
     author = {Jakub{\'\i}k, J\'an},
     title = {On vector lattices of elementary {Carath\'eodory} functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {223--236},
     year = {2005},
     volume = {55},
     number = {1},
     mrnumber = {2121669},
     zbl = {1081.06021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a16/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On vector lattices of elementary Carathéodory functions
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 223
EP  - 236
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a16/
LA  - en
ID  - CMJ_2005_55_1_a16
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On vector lattices of elementary Carathéodory functions
%J Czechoslovak Mathematical Journal
%D 2005
%P 223-236
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a16/
%G en
%F CMJ_2005_55_1_a16
Jakubík, Ján. On vector lattices of elementary Carathéodory functions. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 223-236. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a16/

[1] G.  Birkhoff: Lattice Theory, Third Edition. Providence, 1967. | MR

[2] P.  Conrad: Lattice Ordered Groups. Tulane University, Tulane, 1970. | Zbl

[3] P.  Conrad and M. R.  Darnel: Lattice-ordered groups whose lattices determine their additions. Trans. Amer. Math. Soc. 330 (1992), 575–598. | DOI | MR

[4] P. F.  Conrad and M. R.  Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295–319. | DOI | MR

[5] P. F.  Conrad and M. R.  Darnel: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math.  J (to appear). | MR

[6] P. F.  Conrad and J. Martinez: Signatures and $S$-discrete lattice ordered groups. Alg. Universalis 29 (1992), 521–545. | DOI | MR

[7] C.  Gofman: Remarks on lattice ordered groups and vector lattices. I.  Carathéodory functions. Trans. Amer. Math. Soc. 88 (1958), 107–120. | MR

[8] J.  Jakubík: Konvexe Ketten in $\ell $-Gruppen. Čas. pěst. mat. 83 (1959), 53–63. | MR

[9] J.  Jakubík: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85–98. | DOI | MR

[10] J.  Jakubík: Distributivity in lattice ordered groups. Czechoslovak Math.  J. 22 (1972), 108–125. | MR

[11] J.  Jakubík: Torsion classes of Specker lattice ordered groups. Czechoslovak Math.  J. 52 (2002), 469–482. | DOI | MR

[12] R.  Sikorski: Boolean Algebras. Second Edition, Springer-Verlag, Berlin, 1964. | MR | Zbl

[13] E. C.  Weinberg: Higher degrees of distributivity in lattices of continuous functions. Trans. Amer. Math. Soc. 114 (1962), 334–346. | DOI | MR | Zbl