Keywords: second order nonlinear differential equation; oscillatory solution; nonoscillatory solution; coexistence problem
@article{CMJ_2005_55_1_a15,
author = {Bartu\v{s}ek, M. and Cecchi, M. and Do\v{s}l\'a, Z. and Marini, M.},
title = {Global monotonicity and oscillation for second order differential equation},
journal = {Czechoslovak Mathematical Journal},
pages = {209--222},
year = {2005},
volume = {55},
number = {1},
mrnumber = {2121668},
zbl = {1081.34029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a15/}
}
TY - JOUR AU - Bartušek, M. AU - Cecchi, M. AU - Došlá, Z. AU - Marini, M. TI - Global monotonicity and oscillation for second order differential equation JO - Czechoslovak Mathematical Journal PY - 2005 SP - 209 EP - 222 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a15/ LA - en ID - CMJ_2005_55_1_a15 ER -
%0 Journal Article %A Bartušek, M. %A Cecchi, M. %A Došlá, Z. %A Marini, M. %T Global monotonicity and oscillation for second order differential equation %J Czechoslovak Mathematical Journal %D 2005 %P 209-222 %V 55 %N 1 %U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a15/ %G en %F CMJ_2005_55_1_a15
Bartušek, M.; Cecchi, M.; Došlá, Z.; Marini, M. Global monotonicity and oscillation for second order differential equation. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 209-222. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a15/
[1] M. Cecchi, M. Marini and G. Villari: On some classes of continuable solutions of a nonlinear differential equation. J. Diff. Equat. 118 (1995), 403–419. | DOI | MR
[2] C. V. Coffman and J. S. W. Wong: On a second order nonlinear oscillation problem. Trans. Amer. Math. Soc. 147 (1970), 357–366. | DOI | MR
[3] C. V. Coffman and J. S. W. Wong: Oscillation and nonoscillation theorems for second order differential equations. Funkcialaj Ekvacioj 15 (1972), 119–130. | MR
[4] C. V. Coffman and J. S. W. Wong: Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations. Trans. Amer. Math. Soc. 167 (1972), 399–434. | DOI | MR
[5] L. H. Erbe and J. S. Muldowney: On the existence of oscillatory solutions to nonlinear differential equations. Ann. Mat. Pura Appl. 59 (1976), 23–37. | MR
[6] L. H. Erbe and H. Lu: Nonoscillation theorems for second order nonlinear differential equations. Funkcialaj Ekvacioj 33 (1990), 227–244. | MR
[7] L. H. Erbe: Nonoscillation criteria for second order nonlinear differential equations. J. Math. Anal. Appl. 108 (1985), 515–527. | DOI | MR | Zbl
[8] J. W. Heidel and I. T. Kiguradze: Oscillatory solutions for a generalized sublinear second order differential equation. Proc. Amer. Math. Soc. 38 (1973), 80–82. | DOI | MR
[9] D. V. Izjumova: On oscillation and nonoscillation conditions for solutions of nonlinear second order differential equations. Diff. Urav. 11 (1966), 1572–1586. (Russian)
[10] M. Jasný: On the existence of oscillatory solutions of the second order nonlinear differential equation $y^{\prime \prime }+f(x)y^{2n-1}=0$. Čas. Pěst. Mat. 85 (1960), 78–83. (Russian)
[11] I. Kiguradze and A. Chanturia: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Acad. Publ., , 1993. | MR
[12] J. Kurzweil: A note on oscillatory solutions of the equation $y^{\prime \prime }+f(x)y^{2n-1}=0$. Čas. Pěst. Mat. 82 (1957), 218–226. (Russian)
[13] Chiou Kuo-Liang: The existence of oscillatory solutions for the equation ${\mathrm d}^2y/{\mathrm d}t^2 +q(t)y^{r}=0$, $0. Proc. Amer. Math. Soc. 35 (1972), 120–122. DOI 10.1090/S0002-9939-1972-0301292-2 | MR 0301292
[14] S. Matucci: On asymptotic decaying solutions for a class of second order differential equations. Arch. Math. (Brno) 35 (1999), 275–284. | MR | Zbl
[15] J. D. Mirzov: Asymptotic properties of solutions of the systems of nonlinear nonautonomous ordinary differential equations. (1993), Adygeja Publ., Maikop. (Russian)
[16] R. A. Moore and Z. Nehari: Nonoscillation theorems for a class of nonlinear differential equations. Trans. Amer. Math. Soc. 93 (1959), 30–52. | DOI | MR
[17] J. Sugie and K. Kita: Oscillation criteria for second order nonlinear differential equations of Euler type. J. Math. Anal. Appl. 253 (2001), 414–439. | DOI | MR
[18] J. S. W. Wong: On the generalized Emden-Fowler equation. SIAM Rev. 17 (1975), 339–360. | DOI | MR | Zbl