Balanced Colombeau products of the distributions $x_{\pm}^{-p}$ and $x^{-p}$
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 189-201
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Results on singular products of the distributions $x_{\pm }^{-p}$ and $x^{-p}$ for natural $p$ are derived, when the products are balanced so that their sum exists in the distribution space. These results follow the pattern of a known distributional product published by Jan Mikusiński in 1966. The results are obtained in the Colombeau algebra of generalized functions, which is the most relevant algebraic construction for tackling nonlinear problems of Schwartz distributions.
Results on singular products of the distributions $x_{\pm }^{-p}$ and $x^{-p}$ for natural $p$ are derived, when the products are balanced so that their sum exists in the distribution space. These results follow the pattern of a known distributional product published by Jan Mikusiński in 1966. The results are obtained in the Colombeau algebra of generalized functions, which is the most relevant algebraic construction for tackling nonlinear problems of Schwartz distributions.
Classification : 46F10, 46F30
Keywords: Schwartz distributions; multiplication; Colombeau generalized functions
@article{CMJ_2005_55_1_a13,
     author = {Damyanov, B. P.},
     title = {Balanced {Colombeau} products of the distributions  $x_{\pm}^{-p}$ and $x^{-p}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {189--201},
     year = {2005},
     volume = {55},
     number = {1},
     mrnumber = {2121666},
     zbl = {1081.46027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a13/}
}
TY  - JOUR
AU  - Damyanov, B. P.
TI  - Balanced Colombeau products of the distributions  $x_{\pm}^{-p}$ and $x^{-p}$
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 189
EP  - 201
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a13/
LA  - en
ID  - CMJ_2005_55_1_a13
ER  - 
%0 Journal Article
%A Damyanov, B. P.
%T Balanced Colombeau products of the distributions  $x_{\pm}^{-p}$ and $x^{-p}$
%J Czechoslovak Mathematical Journal
%D 2005
%P 189-201
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a13/
%G en
%F CMJ_2005_55_1_a13
Damyanov, B. P. Balanced Colombeau products of the distributions  $x_{\pm}^{-p}$ and $x^{-p}$. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 189-201. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a13/

[1] V.  Chistyakov: The Colombeau generalized nonlinear analysis and the Schwartz linear distribution theory. J.  Math. Sci. 93 (1999), 42–133. | DOI | MR | Zbl

[2] J.-F.  Colombeau: New generalized functions. Multiplication of distributions. Physical applications. Contribution of J. Sebastião e Silva. Portugal Math. 41 (1982), 57–69. | MR | Zbl

[3] J. F.  Colombeau: New Generalized Functions and Multiplication of Distributions. North Holland Math. Studies 84, Amsterdam, 1984. | MR | Zbl

[4] B. Damyanov: Results on Colombeau product of distributions. Comment. Math. Univ. Carolinae 38 (1997), 627–634. | MR | Zbl

[5] B. Damyanov: Mikusiński type products of distributions in Colombeau algebra. Indian J.  Pure Appl. Math. 32 (2001), 361–375. | MR | Zbl

[6] I.  Gradstein and I.  Ryzhik: Tables of Integrals, Sums, Series, and Products. Fizmatgiz Publishing, Moscow, 1963.

[7] I.  Gel’fand and G.  Shilov: Generalized Functions, Vol. 1. Academic Press, New York and London, 1964. | MR

[8] L.  Hörmander: Analysis of LPD  Operators  I. Distribution Theory and Fourier Analysis. Springer-Verlag, Berlin, 1983. | MR

[9] J. Jelínek: Characterization of the Colombeau product of distributions. Comment. Math. Univ. Carolinae 27 (1986), 377–394. | MR

[10] J.  Mikusiński: On the square of the Dirac delta-distribution. Bull. Acad. Pol. Ser. Sci. Math. Astron. Phys. 43 (1966), 511–513. | MR

[11] M.  Oberguggenberger: Multiplication of Distributions and Applications to PDEs. Longman, Essex, 1992.