Keywords: secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative
@article{CMJ_2005_55_1_a12,
author = {Argyros, Ioannis K.},
title = {New sufficient convergence conditions for the secant method},
journal = {Czechoslovak Mathematical Journal},
pages = {175--187},
year = {2005},
volume = {55},
number = {1},
mrnumber = {2121665},
zbl = {1081.65043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a12/}
}
Argyros, Ioannis K. New sufficient convergence conditions for the secant method. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 175-187. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a12/
[1] I. K. Argyros: A convergence theorem for Newton-like methods under generalized Chen-Yamamoto-type assumptions. Appl. Math. Comput. 61 (1994), 25–37. | DOI | MR | Zbl
[2] I. K. Argyros: On a new Newton-Mysovskii-type theorem with applications to inexact-Newton-like methods and their discretizations. IMA J. Numer. Anal. 18 (1998), 37–56. | DOI | MR
[3] I. K. Argyros and F. Szidarovszky: The Theory and Application of Iteration Methods. CRC Press, Boca Raton, 1993. | MR
[4] W. E. Bosarge and P. L. Falb: A multipoint method of third order. J. Optimiz. Th. Applic. 4 (1969), 156–166. | DOI | MR
[5] J. E. Dennis: Toward a unified convergence theory for Newton-like methods. In: Nonlinear Functional Analysis, L. B. Rall (ed.), Academic Press, New York, 1971. | MR | Zbl
[6] J. M. Gutiérrez: A new semilocal convergence theorem for Newton’s method. J. Comput. Appl. Math. 79 (1997), 131–145. | DOI | MR
[7] J. M. Gutiérrez, M. A. Hernandez and M. A. Salanova: Accessibility of solutions by Newton’s method. Intern. J. Comput. Math. 57 (1995), 239–247. | DOI
[8] M. A. Hernandez, M. J. Rubio and J. A. Ezquerro: Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115 (2000), 245–254. | DOI | MR
[9] L. V. Kantorovich and G. R. Akilov: Functional Analysis in Normed Spaces. Pergamon Press, Oxford Press, , 1982. | MR
[10] J. M. Ortega and W. C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970. | MR
[11] F. A. Potra: Sharp error bounds for a class of Newton-like methods. Libertas Mathematica 5 (1985), 71–84. | MR | Zbl
[12] T. Yamamoto: A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987), 545–557. | DOI | MR | Zbl