New sufficient convergence conditions for the secant method
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 175-187
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We provide new sufficient conditions for the convergence of the secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses “Lipschitz-type” and center-“Lipschitz-type” instead of just “Lipschitz-type” conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than the earlier ones and under our convergence hypotheses we can cover cases where the earlier conditions are violated.
We provide new sufficient conditions for the convergence of the secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses “Lipschitz-type” and center-“Lipschitz-type” instead of just “Lipschitz-type” conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than the earlier ones and under our convergence hypotheses we can cover cases where the earlier conditions are violated.
Classification : 47H17, 47J25, 49M15, 65B05, 65G99, 65H10, 65J15, 65N30
Keywords: secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative
@article{CMJ_2005_55_1_a12,
     author = {Argyros, Ioannis K.},
     title = {New sufficient convergence conditions for the secant method},
     journal = {Czechoslovak Mathematical Journal},
     pages = {175--187},
     year = {2005},
     volume = {55},
     number = {1},
     mrnumber = {2121665},
     zbl = {1081.65043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a12/}
}
TY  - JOUR
AU  - Argyros, Ioannis K.
TI  - New sufficient convergence conditions for the secant method
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 175
EP  - 187
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a12/
LA  - en
ID  - CMJ_2005_55_1_a12
ER  - 
%0 Journal Article
%A Argyros, Ioannis K.
%T New sufficient convergence conditions for the secant method
%J Czechoslovak Mathematical Journal
%D 2005
%P 175-187
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a12/
%G en
%F CMJ_2005_55_1_a12
Argyros, Ioannis K. New sufficient convergence conditions for the secant method. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 175-187. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a12/

[1] I. K.  Argyros: A convergence theorem for Newton-like methods under generalized Chen-Yamamoto-type assumptions. Appl. Math. Comput. 61 (1994), 25–37. | DOI | MR | Zbl

[2] I. K.  Argyros: On a new Newton-Mysovskii-type theorem with applications to inexact-Newton-like methods and their discretizations. IMA J.  Numer. Anal. 18 (1998), 37–56. | DOI | MR

[3] I. K.  Argyros and F.  Szidarovszky: The Theory and Application of Iteration Methods. CRC Press, Boca Raton, 1993. | MR

[4] W. E.  Bosarge and P. L.  Falb: A multipoint method of third order. J.  Optimiz. Th. Applic. 4 (1969), 156–166. | DOI | MR

[5] J. E.  Dennis: Toward a unified convergence theory for Newton-like methods. In: Nonlinear Functional Analysis, L. B.  Rall (ed.), Academic Press, New York, 1971. | MR | Zbl

[6] J. M.  Gutiérrez: A new semilocal convergence theorem for Newton’s method. J.  Comput. Appl. Math. 79 (1997), 131–145. | DOI | MR

[7] J. M.  Gutiérrez, M. A.  Hernandez and M. A. Salanova: Accessibility of solutions by Newton’s method. Intern. J.  Comput. Math. 57 (1995), 239–247. | DOI

[8] M. A.  Hernandez, M. J.  Rubio and J. A. Ezquerro: Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J.  Comput. Appl. Math. 115 (2000), 245–254. | DOI | MR

[9] L. V.  Kantorovich and G. R.  Akilov: Functional Analysis in Normed Spaces. Pergamon Press, Oxford Press, , 1982. | MR

[10] J. M.  Ortega and W. C.  Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970. | MR

[11] F. A.  Potra: Sharp error bounds for a class of Newton-like methods. Libertas Mathematica 5 (1985), 71–84. | MR | Zbl

[12] T.  Yamamoto: A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987), 545–557. | DOI | MR | Zbl