Infinite independent systems of the identities of the associative algebra over an infinite field of characteristic $p>0$
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 1-23
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper some infinitely based varieties of groups are constructed and these results are transferred to the associative algebras (or Lie algebras) over an infinite field of an arbitrary positive characteristic.
In this paper some infinitely based varieties of groups are constructed and these results are transferred to the associative algebras (or Lie algebras) over an infinite field of an arbitrary positive characteristic.
Classification : 16R10, 20E10
Keywords: associative algebras; infinite systems of identities; Specht’s problem.
@article{CMJ_2005_55_1_a0,
     author = {Sandu, N. I.},
     title = {Infinite independent systems of the identities of the associative algebra over an infinite field of characteristic $p>0$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--23},
     year = {2005},
     volume = {55},
     number = {1},
     mrnumber = {2121653},
     zbl = {1081.16030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a0/}
}
TY  - JOUR
AU  - Sandu, N. I.
TI  - Infinite independent systems of the identities of the associative algebra over an infinite field of characteristic $p>0$
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 1
EP  - 23
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a0/
LA  - en
ID  - CMJ_2005_55_1_a0
ER  - 
%0 Journal Article
%A Sandu, N. I.
%T Infinite independent systems of the identities of the associative algebra over an infinite field of characteristic $p>0$
%J Czechoslovak Mathematical Journal
%D 2005
%P 1-23
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a0/
%G en
%F CMJ_2005_55_1_a0
Sandu, N. I. Infinite independent systems of the identities of the associative algebra over an infinite field of characteristic $p>0$. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 1-23. http://geodesic.mathdoc.fr/item/CMJ_2005_55_1_a0/

[1] W.  Specht: Gesetze in Ringen  1. Math. Z. 52 (1950), 557–589. | DOI | MR

[2] A. P.  Kemer: Finite basing of the identities of the associative algebras. Algebra i logika 26 (1987), 597–641. (Russian) | DOI | MR

[3] V. V.  Schigolev: Examples of infinitely based $T$-spaces. Matem. sb. 191 (2000), 143–160. (Russian) | MR

[4] A. I.  Belov: Counterexamples to the Specht’s problem. Matem. sb. 191 (2000), 13–24. (Russian) | MR

[5] N. I.  Sandu: Infinite independent systems of the identities of the associative algebras over an infinite field of characteristic 2. Matem. zametki 74 (2003), 603–611. (Russian) | MR

[6] The Dnestr Notebook. Unsolved Problems of the Ring and Module Theory. Institute of Mathematics of SD AS USSS, Novosibirsk, 1982. (Russian)

[7] A. E.  Zalesskij and A. V.  Mikhalev: Group rings. The results of science and technique. Modern Mathematics Problems. Main Directions, VINITI, Moskva, 1973, pp. 5–118. (Russian) | MR

[8] M. R. Vaughan-Lee: Uncountably many varieties of groups. Bull. London Math. Soc. 2 (1970), 280–286. | DOI | MR | Zbl

[9] S.  Leng: Algebra. Addison-Wesley Publishing Company, Reading, 1965. | MR

[10] W.  Magnus, A.  Karrass and D.  Solitar: Combinatorial Group Theory. Wiley, New York, 1966.

[11] M. R. Vaughan-Lee: Varieties of Lie algebras. Quart. J.  Math. 21 (1970), 297–308. | DOI | MR | Zbl

[12] V. S.  Drenski: About identities in Lie algebras. Algebra i logika 13 (1974), 265–290. (Russian) | DOI | MR