A generalization of Lerch’s formula
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 941-947
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give higher-power generalizations of the classical Lerch formula for the gamma function.
We give higher-power generalizations of the classical Lerch formula for the gamma function.
Classification : 11M35, 11M36, 33B15
Keywords: Lerch’s formula; Hurwitz zeta function; zeta regularized product
@article{CMJ_2004_54_4_a9,
     author = {Kurokawa, Nobushige and Wakayama, Masato},
     title = {A generalization of {Lerch{\textquoteright}s} formula},
     journal = {Czechoslovak Mathematical Journal},
     pages = {941--947},
     year = {2004},
     volume = {54},
     number = {4},
     mrnumber = {2100006},
     zbl = {1114.11074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a9/}
}
TY  - JOUR
AU  - Kurokawa, Nobushige
AU  - Wakayama, Masato
TI  - A generalization of Lerch’s formula
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 941
EP  - 947
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a9/
LA  - en
ID  - CMJ_2004_54_4_a9
ER  - 
%0 Journal Article
%A Kurokawa, Nobushige
%A Wakayama, Masato
%T A generalization of Lerch’s formula
%J Czechoslovak Mathematical Journal
%D 2004
%P 941-947
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a9/
%G en
%F CMJ_2004_54_4_a9
Kurokawa, Nobushige; Wakayama, Masato. A generalization of Lerch’s formula. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 941-947. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a9/

[1] S. Bochner: Zeta functions and Green’s functions for linear partial differential operators of elliptic type with constant coefficients. Ann. Math. 57 (1953), 32–56. | DOI | MR | Zbl

[2] Ch. Deninger: Local $L$-factors of motives and regularized determinants. Invent. math. 107 (1992), 135–150. | DOI | MR | Zbl

[3] N. Kurokawa: Gamma factors and Plancherel measures. Proc. Japan Acad. 68A (1992), 256–260. | MR | Zbl

[4] N. Kurokawa and M. Wakayama: Higher Selberg zeta functions. Commun. Math. Phys. 247 (2004), 447–466. | DOI | MR

[5] N. Kurokawa and M. Wakayama: Generalized zeta regularizations, quantum class number formulas, and Appell’s $O$-functions. The Ramanujan J (to appear). | MR

[6] M. Lerch: Další studie v oboru Malmsténovských řad. Rozpravy České Akad. věd 3 (1894), 1–61.

[7] Yu. I. Manin: Lectures on zeta functions and motives (according to Deninger and Kurokawa). Astérisque 228 (1995), 121–163. | MR