A note on ultrametric matrices
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 929-940
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is proved in this paper that special generalized ultrametric and special $\mathcal U$ matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and $ \mathcal U$ matrices, respectively. Moreover, we present a new class of inverse $M$-matrices which generalizes the class of $\mathcal U$ matrices.
It is proved in this paper that special generalized ultrametric and special $\mathcal U$ matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and $ \mathcal U$ matrices, respectively. Moreover, we present a new class of inverse $M$-matrices which generalizes the class of $\mathcal U$ matrices.
Classification : 05C50, 15A09, 15A48, 15A57
Keywords: generalized ultrametric matrix; $ \mathcal U$ matrix; weighted graph; inverse $M$-matrix
@article{CMJ_2004_54_4_a8,
     author = {Zhang, Xiao-Dong},
     title = {A note on ultrametric matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {929--940},
     year = {2004},
     volume = {54},
     number = {4},
     mrnumber = {2100005},
     zbl = {1080.15500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a8/}
}
TY  - JOUR
AU  - Zhang, Xiao-Dong
TI  - A note on ultrametric matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 929
EP  - 940
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a8/
LA  - en
ID  - CMJ_2004_54_4_a8
ER  - 
%0 Journal Article
%A Zhang, Xiao-Dong
%T A note on ultrametric matrices
%J Czechoslovak Mathematical Journal
%D 2004
%P 929-940
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a8/
%G en
%F CMJ_2004_54_4_a8
Zhang, Xiao-Dong. A note on ultrametric matrices. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 929-940. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a8/

[1] A. Berman and R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. Academic, 1979; SIAM, 1994. | MR

[2] C. R. Johnson: Inverse $M$-matrices. Linear Algebra Appl. 47 (1982), 159–216. | MR | Zbl

[3] C. Dellacherie, S. Martínez and J. S. Martín: Ultrametric matrices and induced Markov chains. Adv. in Appl. Math. 17 (1996), 169–183. | DOI | MR

[4] C. Dellacherie, S. Martínez and J. S. Martín: Description of the sub-Markov kernel associated to generalized ultrametric matrices: an algorithmic approach. Linear Algebra Appl. 318 (2000), 1–21. | MR

[5] M. Fiedler: Some characterizations of symmmetric inverse $M$-matrices. Linear Algebra Appl. 275–276 (1998), 179–187. | MR

[6] M. Fiedler: Special ultrametric matrices and graphs. SIAM J.  Matrix Anal. Appl. (electronic) 22 (2000), 106–113. | DOI | MR | Zbl

[7] M. Fiedler, C  R. Johnson and T. L Markham: Notes on inverse $M$-matrices. Linear Algebra Appl. 91 (1987), 75–81. | DOI | MR

[8] S. Martínez, G. Michon and J. S. Martín: Inverses of ultrametric matrices are of Stieltjes types. SIAM J. Matrix Anal. Appl. 15 (1994), 98–106. | DOI | MR

[9] J. J. McDonald, R. Nabben, M. Neumann, H. Schneider and M. J. Tsatsomeros: Inverse tridiagonal $Z$-matrices. Linear and Multilinear Algebra 45 (1998), 75–97. | MR

[10] J. J. McDonald, M. Neumann, H. Schneider and M. J. Tsatsomeros: Inverse $M$-matrix inequalities and generalized ultrametric matrices. Linear Algebra Appl. 220 (1995), 329–349. | MR

[11] R. Nabben: A class of inverse $M$-matrices. Electron. J. Linear Algebra 7 (2000), 53–58. | MR | Zbl

[12] R. Nabben and R. S. Varga: A linear algebra proof that the inverses of strictly ultrametric matrix is a strictly diagonally dominant are of Stieljes types. SIAM J. Matrix Anal. Appl. 15 (1994), 107–113. | DOI | MR

[13] R. Nabben and R. S. Varga: Generalized ultrametric matrices—a class of inverse $M$-matrices. Linear Algebra Appl. 220 (1995), 365–390. | MR

[14] M. Neumann: A conjecture concerning the Hadamard product of inverse of $M$-matrices. Linear Algebra Appl. 285 (1995), 277–290. | MR

[15] R. A.  Willoughby: The inverse $M$-matrix problem. Linear Algebra Appl. 18 (1977), 75–94. | DOI | MR | Zbl