Arithmetic progressions, prime numbers, and squarefree integers
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 915-927
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we establish the distribution of prime numbers in a given arithmetic progression $p \equiv l \hspace{4.44443pt}(\@mod \; k)$ for which $ap + b$ is squarefree.
In this paper we establish the distribution of prime numbers in a given arithmetic progression $p \equiv l \hspace{4.44443pt}(\@mod \; k)$ for which $ap + b$ is squarefree.
Classification :
11B05, 11B25, 11K65, 11N13, 11N25, 11N37, 11N69
Keywords: primes in arithmetic progressions; squarefree integers; Artin’s constant
Keywords: primes in arithmetic progressions; squarefree integers; Artin’s constant
@article{CMJ_2004_54_4_a7,
author = {Clary, Stuart and Fabrykowski, Jacek},
title = {Arithmetic progressions, prime numbers, and squarefree integers},
journal = {Czechoslovak Mathematical Journal},
pages = {915--927},
year = {2004},
volume = {54},
number = {4},
mrnumber = {2100004},
zbl = {1080.11012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a7/}
}
Clary, Stuart; Fabrykowski, Jacek. Arithmetic progressions, prime numbers, and squarefree integers. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 915-927. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a7/