Function spaces on $\tau$-Corson compacta and tightness of polyadic spaces
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 899-914
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We apply the general theory of $\tau $-Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness $\tau $. In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces.
We apply the general theory of $\tau $-Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness $\tau $. In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces.
Classification : 54C35, 54D30
Keywords: boolean; polyadic; function space; Corson; compact; $C_p (X)$; Eberlein; tightness
@article{CMJ_2004_54_4_a6,
     author = {Bell, M. and Marciszewski, W.},
     title = {Function spaces on $\tau${-Corson} compacta and tightness of polyadic spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {899--914},
     year = {2004},
     volume = {54},
     number = {4},
     mrnumber = {2100003},
     zbl = {1080.54508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a6/}
}
TY  - JOUR
AU  - Bell, M.
AU  - Marciszewski, W.
TI  - Function spaces on $\tau$-Corson compacta and tightness of polyadic spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 899
EP  - 914
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a6/
LA  - en
ID  - CMJ_2004_54_4_a6
ER  - 
%0 Journal Article
%A Bell, M.
%A Marciszewski, W.
%T Function spaces on $\tau$-Corson compacta and tightness of polyadic spaces
%J Czechoslovak Mathematical Journal
%D 2004
%P 899-914
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a6/
%G en
%F CMJ_2004_54_4_a6
Bell, M.; Marciszewski, W. Function spaces on $\tau$-Corson compacta and tightness of polyadic spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 899-914. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a6/

[1] K. Alster and R. Pol: On function spaces of compact subspaces of $\Sigma $-products of the real line. Fund. Math. 107 (1980), 135–143. | DOI | MR

[2] A. V.  Arkhangel’skii: Topological Function Spaces. Kluwer Academic Publishers, 1992. | MR

[3] M.  Bell: Generalized dyadic spaces. Fund. Math. CXXV (1985), 47–58. | DOI | MR | Zbl

[4] M. Bell: Tightness in polyadic spaces. Topology Proc. 25 (2000), 63–74. | MR | Zbl

[5] M. Bell: Polyadic spaces of countable tightness. Topology and its Applications 123 (2002), 401–407. | DOI | MR | Zbl

[6] Y.  Benyamini, M.  E. Rudin and M. Wage: Continuous images of weakly compact subsets of Banach spaces. Pacific J. Math. 70 (1977), 309–324. | DOI | MR

[7] H.  Corson: Normality in subsets of product spaces. Amer. J. Math. 81 (1959), 785–796. | DOI | MR | Zbl

[8] J. Gerlits: On a generalization of dyadicity. Studia Sci. Math. Hungar. 13 (1978), 1–17. | MR | Zbl

[9] S. P. Gul’ko: On properties of subsets of $\Sigma $-products. Dokl. Acad. Nauk SSSR 237 (1977). | MR

[10] O.  Kalenda: Embedding of the ordinal segment $[0, \omega _1]$ into continuous images of Valdivia compacta. Comment. Math. Univ. Carolin. 40 (1999), 777–783. | MR | Zbl

[11] O.  Kalenda: Valdivia compact spaces in topology and Banach space theory. Extracta Math. 15 (2000), 1–85. | MR | Zbl

[12] A.  Kombarov: On the normality of $\Sigma _m$-products. Dokl. Akad. Nauk SSSR 211 (1973). | MR

[13] A.  Kombarov and V.  Malyhin: On $\Sigma $-products. Dokl. Akad. Nauk SSSR 213 (1973). | MR

[14] S.  Mardesic: On covering dimension and inverse limits of compact spaces. Illinois J. Math. 4 (1960), 278–291. | DOI | MR | Zbl

[15] S.  Mrowka: Mazur theorem and $m$-adic spaces. Bull. Acad. Pol. Sci. XVIII (1970), 299–305. | MR | Zbl

[16] N.  Noble: Products with closed projections. II. Trans. Amer. Math. Soc. 160 (1971), 169–183. | DOI | MR | Zbl

[17] G.  Plebanek: Compact spaces that result from adequate families of sets. Topology Appl. 65 (1995), 257–270. | DOI | MR

[18] R.  Pol: On weak and pointwise topology in function spaces. University of Warsaw preprint No. 4184, Warsaw, 1984.

[19] M.  Talagrand: Espaces de Banach faiblement $K$-analytiques. Ann. Math. 110 (1979), 407–438. | DOI | MR