Keywords: boolean; polyadic; function space; Corson; compact; $C_p (X)$; Eberlein; tightness
@article{CMJ_2004_54_4_a6,
author = {Bell, M. and Marciszewski, W.},
title = {Function spaces on $\tau${-Corson} compacta and tightness of polyadic spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {899--914},
year = {2004},
volume = {54},
number = {4},
mrnumber = {2100003},
zbl = {1080.54508},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a6/}
}
Bell, M.; Marciszewski, W. Function spaces on $\tau$-Corson compacta and tightness of polyadic spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 899-914. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a6/
[1] K. Alster and R. Pol: On function spaces of compact subspaces of $\Sigma $-products of the real line. Fund. Math. 107 (1980), 135–143. | DOI | MR
[2] A. V. Arkhangel’skii: Topological Function Spaces. Kluwer Academic Publishers, 1992. | MR
[3] M. Bell: Generalized dyadic spaces. Fund. Math. CXXV (1985), 47–58. | DOI | MR | Zbl
[4] M. Bell: Tightness in polyadic spaces. Topology Proc. 25 (2000), 63–74. | MR | Zbl
[5] M. Bell: Polyadic spaces of countable tightness. Topology and its Applications 123 (2002), 401–407. | DOI | MR | Zbl
[6] Y. Benyamini, M. E. Rudin and M. Wage: Continuous images of weakly compact subsets of Banach spaces. Pacific J. Math. 70 (1977), 309–324. | DOI | MR
[7] H. Corson: Normality in subsets of product spaces. Amer. J. Math. 81 (1959), 785–796. | DOI | MR | Zbl
[8] J. Gerlits: On a generalization of dyadicity. Studia Sci. Math. Hungar. 13 (1978), 1–17. | MR | Zbl
[9] S. P. Gul’ko: On properties of subsets of $\Sigma $-products. Dokl. Acad. Nauk SSSR 237 (1977). | MR
[10] O. Kalenda: Embedding of the ordinal segment $[0, \omega _1]$ into continuous images of Valdivia compacta. Comment. Math. Univ. Carolin. 40 (1999), 777–783. | MR | Zbl
[11] O. Kalenda: Valdivia compact spaces in topology and Banach space theory. Extracta Math. 15 (2000), 1–85. | MR | Zbl
[12] A. Kombarov: On the normality of $\Sigma _m$-products. Dokl. Akad. Nauk SSSR 211 (1973). | MR
[13] A. Kombarov and V. Malyhin: On $\Sigma $-products. Dokl. Akad. Nauk SSSR 213 (1973). | MR
[14] S. Mardesic: On covering dimension and inverse limits of compact spaces. Illinois J. Math. 4 (1960), 278–291. | DOI | MR | Zbl
[15] S. Mrowka: Mazur theorem and $m$-adic spaces. Bull. Acad. Pol. Sci. XVIII (1970), 299–305. | MR | Zbl
[16] N. Noble: Products with closed projections. II. Trans. Amer. Math. Soc. 160 (1971), 169–183. | DOI | MR | Zbl
[17] G. Plebanek: Compact spaces that result from adequate families of sets. Topology Appl. 65 (1995), 257–270. | DOI | MR
[18] R. Pol: On weak and pointwise topology in function spaces. University of Warsaw preprint No. 4184, Warsaw, 1984.
[19] M. Talagrand: Espaces de Banach faiblement $K$-analytiques. Ann. Math. 110 (1979), 407–438. | DOI | MR