$\oplus$-cofinitely supplemented modules
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 1083-1088
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a ring and $M$ a right $R$-module. $M$ is called $ \oplus $-cofinitely supplemented if every submodule $N$ of $M$ with $\frac{M}{N}$ finitely generated has a supplement that is a direct summand of $M$. In this paper various properties of the $\oplus $-cofinitely supplemented modules are given. It is shown that (1) Arbitrary direct sum of $\oplus $-cofinitely supplemented modules is $\oplus $-cofinitely supplemented. (2) A ring $R$ is semiperfect if and only if every free $R$-module is $\oplus $-cofinitely supplemented. In addition, if $M$ has the summand sum property, then $M$ is $\oplus $-cofinitely supplemented iff every maximal submodule has a supplement that is a direct summand of $M$.
Let $R$ be a ring and $M$ a right $R$-module. $M$ is called $ \oplus $-cofinitely supplemented if every submodule $N$ of $M$ with $\frac{M}{N}$ finitely generated has a supplement that is a direct summand of $M$. In this paper various properties of the $\oplus $-cofinitely supplemented modules are given. It is shown that (1) Arbitrary direct sum of $\oplus $-cofinitely supplemented modules is $\oplus $-cofinitely supplemented. (2) A ring $R$ is semiperfect if and only if every free $R$-module is $\oplus $-cofinitely supplemented. In addition, if $M$ has the summand sum property, then $M$ is $\oplus $-cofinitely supplemented iff every maximal submodule has a supplement that is a direct summand of $M$.
Classification : 16D70, 16D99
Keywords: cofinite submodule; $\oplus $-cofinitely supplemented module
@article{CMJ_2004_54_4_a20,
     author = {\c{C}al{\i}\c{s}{\i}c{\i}, H. and Pancar, A.},
     title = {$\oplus$-cofinitely supplemented modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1083--1088},
     year = {2004},
     volume = {54},
     number = {4},
     mrnumber = {2100016},
     zbl = {1080.16002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a20/}
}
TY  - JOUR
AU  - Çalışıcı, H.
AU  - Pancar, A.
TI  - $\oplus$-cofinitely supplemented modules
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 1083
EP  - 1088
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a20/
LA  - en
ID  - CMJ_2004_54_4_a20
ER  - 
%0 Journal Article
%A Çalışıcı, H.
%A Pancar, A.
%T $\oplus$-cofinitely supplemented modules
%J Czechoslovak Mathematical Journal
%D 2004
%P 1083-1088
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a20/
%G en
%F CMJ_2004_54_4_a20
Çalışıcı, H.; Pancar, A. $\oplus$-cofinitely supplemented modules. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 1083-1088. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a20/

[1] R.  Alizade, G.  Bilhan and P. F.  Smith: Modules whose maximal submodules have supplements. Comm. Algebra 29 (2001), 2389–2405. | DOI | MR

[2] J. L.  Garcia: Properties of direct summands of modules. Comm. Algebra 17 (1989), 73–92. | DOI | MR | Zbl

[3] A.  Harmanci, D.  Keskin and P. F.  Smith: On $ \oplus $-supplemented modules. Acta Math. Hungar. 83 (1999), 161–169. | DOI | MR

[4] D.  Keskin, P. F.  Smith and W.  Xue: Rings whose modules are $ \oplus $-supplemented. J.  Algebra 218 (1999), 470–487. | DOI | MR

[5] S. H.  Mohamed B. J.  Müller: Continuous and Discrete Modules. London Math. Soc. LNS Vol.  147. Cambridge Univ. Press, Cambridge, 1990. | MR

[6] R.  Wisbauer: Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia, 1991. | MR | Zbl

[7] H.  Zöschinger: Komplementierte Moduln über Dedekindringen. J.  Algebra 29 (1974), 42–56. | DOI | MR