Natural operators lifting vector fields to bundles of Weil contact elements
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 855-867
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A$ be a Weil algebra. The bijection between all natural operators lifting vector fields from $m$-manifolds to the bundle functor $K^A$ of Weil contact elements and the subalgebra of fixed elements $SA$ of the Weil algebra $A$ is determined and the bijection between all natural affinors on $K^A$ and $SA$ is deduced. Furthermore, the rigidity of the functor $K^A$ is proved. Requisite results about the structure of $SA$ are obtained by a purely algebraic approach, namely the existence of nontrivial $SA$ is discussed.
Let $A$ be a Weil algebra. The bijection between all natural operators lifting vector fields from $m$-manifolds to the bundle functor $K^A$ of Weil contact elements and the subalgebra of fixed elements $SA$ of the Weil algebra $A$ is determined and the bijection between all natural affinors on $K^A$ and $SA$ is deduced. Furthermore, the rigidity of the functor $K^A$ is proved. Requisite results about the structure of $SA$ are obtained by a purely algebraic approach, namely the existence of nontrivial $SA$ is discussed.
Classification : 12D05, 53A55, 58A20, 58A32
Keywords: Weil algebra; Weil bundle; contact element; natural operator
@article{CMJ_2004_54_4_a2,
     author = {Kure\v{s}, Miroslav and Mikulski, W{\l}odzimierz M.},
     title = {Natural operators lifting vector fields to bundles of {Weil} contact elements},
     journal = {Czechoslovak Mathematical Journal},
     pages = {855--867},
     year = {2004},
     volume = {54},
     number = {4},
     mrnumber = {2099999},
     zbl = {1080.58005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a2/}
}
TY  - JOUR
AU  - Kureš, Miroslav
AU  - Mikulski, Włodzimierz M.
TI  - Natural operators lifting vector fields to bundles of Weil contact elements
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 855
EP  - 867
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a2/
LA  - en
ID  - CMJ_2004_54_4_a2
ER  - 
%0 Journal Article
%A Kureš, Miroslav
%A Mikulski, Włodzimierz M.
%T Natural operators lifting vector fields to bundles of Weil contact elements
%J Czechoslovak Mathematical Journal
%D 2004
%P 855-867
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a2/
%G en
%F CMJ_2004_54_4_a2
Kureš, Miroslav; Mikulski, Włodzimierz M. Natural operators lifting vector fields to bundles of Weil contact elements. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 855-867. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a2/

[1] R. J. Alonso: Jet manifolds associated to a Weil bundle. Arch. Math. (Brno) 36 (2000), 195–199. | MR

[2] M. Doupovec and I. Kolář: Natural affinors on time-dependent Weil bundles. Arch. Math. (Brno) 27 (1991), 205–209. | MR

[3] C. Ehresmann: Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie. (1953), Colloque du C.N.R.S., Strasbourg, 97–110. | MR

[4] J. Gancarzewicz, W. M. Mikulski and Z. Pogoda: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. | DOI | MR

[5] I. Kolář: Affine structure on Weil bundles. Nagoya Math. J. 158 (2000), 99–106. | DOI | MR

[6] I. Kolář: On the natural operators on vector fields. Ann. Glob. Anal. Geom. 6 (1988), 109–117. | DOI | MR

[7] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer Verlag, 1993. | MR

[8] I. Kolář and W. M. Mikulski: Contact elements on fibered manifolds. Czechoslovak Math. J 53(128) (2003), 1017–1030. | DOI | MR

[9] M. Kureš: Weil algebras of generalized higher order velocities bundles. Contemp. Math. 288 (2001), 358–362. | DOI | MR

[10] W. M. Mikulski: Natural differential operators between some natural bundles. Math. Bohem. 118(2) (1993), 153–161. | MR | Zbl

[11] A. Morimoto: Prolongations of connections to bundles of infinitely near points. J. Differential Geom. 11 (1976), 479–498. | DOI | MR

[12] J. Muñoz, J. Rodrigues and F. J. Muriel: Weil bundles and jet spaces. Czechoslovak Math. J. 50 (2000), 721–748. | DOI | MR

[13] J. Tomáš: On quasijet bundles. Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 187–196. | MR

[14] A. Weil: Théorie des points sur les variétés différentiables. Topologie et Géométrie Différentielle, Colloque du C.N.R.S., Strasbourg, 1953, pp. 111–117. | MR

[15] O. Zariski and P. Samuel: Commutative algebra, Vol. II. D. Van Nostrand Company, 1960. | MR