Keywords: noncoercive hemivariational inequality; critical point theory; nontrivial solution; locally Lipschitz functionals
@article{CMJ_2004_54_4_a18,
author = {Halidias, Nikolaos},
title = {A nontrivial solution for {Neumann} noncoercive hemivariational inequalities},
journal = {Czechoslovak Mathematical Journal},
pages = {1065--1075},
year = {2004},
volume = {54},
number = {4},
mrnumber = {2100014},
zbl = {1080.35013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a18/}
}
Halidias, Nikolaos. A nontrivial solution for Neumann noncoercive hemivariational inequalities. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 1065-1075. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a18/
[1] K. C. Chang: Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. | DOI | MR | Zbl
[2] F. Clarke: Optimization and Nonsmooth Analysis. Wiley, New York, 1983. | MR | Zbl
[3] D. G. Costa and J. V. Goncalves: Critical point theory for nondifferentiable functionals and applications. J. Math. Anal. Appl. 153 (1990), 470–485. | DOI | MR
[4] D. G. De Figueiredo: Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Springer, Bombay, 1989. | MR | Zbl
[5] L. Gasinski and N. S. Papageorgiou: Nonlinear hemivariational inequalities at resonance. J. Math. Anal. Appl. 244 (2000), 200–213. | DOI | MR
[6] D. Goeleven, D. Motreanu and P. D. Panagiotopoulos: Multiple solutions for a class of eigenvalue problems in hemivariational inequalities. Nonlinear Anal. 29 (1997), 9–26. | DOI | MR
[7] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer Academic Publishers, Dordrecht, 1997. | MR
[8] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume II: Applications. Kluwer Academic Publishers, Dordrecht, 2000. | MR
[9] N. Kenmochi: Pseudomonotone operators and nonlinear elliptic boundary value problems. J. Math. Soc. Japan 27 (1975), 121–149. | DOI | MR | Zbl
[10] P. D. Panagiotopoulos: Hemivariational Inequalities and Their Applications. Birkhäuser-Verlag, Boston, 1998. | MR
[11] P. D. Panagiotopoulos: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer-Verlag, Berlin, 1993. | MR | Zbl