A nontrivial solution for Neumann noncoercive hemivariational inequalities
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 1065-1075
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider Neumann noncoercive hemivariational inequalities, focusing on nontrivial solutions. We use the critical point theory for locally Lipschitz functionals.
In this paper we consider Neumann noncoercive hemivariational inequalities, focusing on nontrivial solutions. We use the critical point theory for locally Lipschitz functionals.
Classification : 35J20, 35J85, 49J40
Keywords: noncoercive hemivariational inequality; critical point theory; nontrivial solution; locally Lipschitz functionals
@article{CMJ_2004_54_4_a18,
     author = {Halidias, Nikolaos},
     title = {A nontrivial solution for {Neumann} noncoercive hemivariational inequalities},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1065--1075},
     year = {2004},
     volume = {54},
     number = {4},
     mrnumber = {2100014},
     zbl = {1080.35013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a18/}
}
TY  - JOUR
AU  - Halidias, Nikolaos
TI  - A nontrivial solution for Neumann noncoercive hemivariational inequalities
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 1065
EP  - 1075
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a18/
LA  - en
ID  - CMJ_2004_54_4_a18
ER  - 
%0 Journal Article
%A Halidias, Nikolaos
%T A nontrivial solution for Neumann noncoercive hemivariational inequalities
%J Czechoslovak Mathematical Journal
%D 2004
%P 1065-1075
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a18/
%G en
%F CMJ_2004_54_4_a18
Halidias, Nikolaos. A nontrivial solution for Neumann noncoercive hemivariational inequalities. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 1065-1075. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a18/

[1] K. C.  Chang: Variational methods for non-differentiable functionals and their applications to partial differential equations. J.  Math. Anal. Appl. 80 (1981), 102–129. | DOI | MR | Zbl

[2] F.  Clarke: Optimization and Nonsmooth Analysis. Wiley, New York, 1983. | MR | Zbl

[3] D. G. Costa and J. V.  Goncalves: Critical point theory for nondifferentiable functionals and applications. J. Math. Anal. Appl. 153 (1990), 470–485. | DOI | MR

[4] D. G.  De Figueiredo: Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Springer, Bombay, 1989. | MR | Zbl

[5] L.  Gasinski and N. S.  Papageorgiou: Nonlinear hemivariational inequalities at resonance. J.  Math. Anal. Appl. 244 (2000), 200–213. | DOI | MR

[6] D.  Goeleven, D.  Motreanu and P. D.  Panagiotopoulos: Multiple solutions for a class of eigenvalue problems in hemivariational inequalities. Nonlinear Anal. 29 (1997), 9–26. | DOI | MR

[7] S.  Hu and N. S.  Papageorgiou: Handbook of Multivalued Analysis. Volume  I: Theory. Kluwer Academic Publishers, Dordrecht, 1997. | MR

[8] S.  Hu and N. S.  Papageorgiou: Handbook of Multivalued Analysis. Volume II: Applications. Kluwer Academic Publishers, Dordrecht, 2000. | MR

[9] N.  Kenmochi: Pseudomonotone operators and nonlinear elliptic boundary value problems. J.  Math. Soc. Japan 27 (1975), 121–149. | DOI | MR | Zbl

[10] P. D.  Panagiotopoulos: Hemivariational Inequalities and Their Applications. Birkhäuser-Verlag, Boston, 1998. | MR

[11] P. D.  Panagiotopoulos: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer-Verlag, Berlin, 1993. | MR | Zbl