Generalized cardinal properties of lattices and lattice ordered groups
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 1035-1053
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We denote by $K$ the class of all cardinals; put $K^{\prime }= K \cup \lbrace \infty \rbrace $. Let $\mathcal C$ be a class of algebraic systems. A generalized cardinal property $f$ on $\mathcal C$ is defined to be a rule which assings to each $A \in \mathcal C$ an element $f A$ of $K^{\prime }$ such that, whenever $A_1, A_2 \in \mathcal C$ and $A_1 \simeq A_2$, then $f A_1 =f A_2$. In this paper we are interested mainly in the cases when (i) $\mathcal C$ is the class of all bounded lattices $B$ having more than one element, or (ii) $\mathcal C$ is a class of lattice ordered groups.
We denote by $K$ the class of all cardinals; put $K^{\prime }= K \cup \lbrace \infty \rbrace $. Let $\mathcal C$ be a class of algebraic systems. A generalized cardinal property $f$ on $\mathcal C$ is defined to be a rule which assings to each $A \in \mathcal C$ an element $f A$ of $K^{\prime }$ such that, whenever $A_1, A_2 \in \mathcal C$ and $A_1 \simeq A_2$, then $f A_1 =f A_2$. In this paper we are interested mainly in the cases when (i) $\mathcal C$ is the class of all bounded lattices $B$ having more than one element, or (ii) $\mathcal C$ is a class of lattice ordered groups.
Classification : 06B05, 06F15
Keywords: bounded lattice; lattice ordered group; generalized cardinal property; homogeneity
@article{CMJ_2004_54_4_a16,
     author = {Jakub{\'\i}k, J\'an},
     title = {Generalized cardinal properties of lattices and lattice ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1035--1053},
     year = {2004},
     volume = {54},
     number = {4},
     mrnumber = {2100012},
     zbl = {1080.06029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a16/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Generalized cardinal properties of lattices and lattice ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 1035
EP  - 1053
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a16/
LA  - en
ID  - CMJ_2004_54_4_a16
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Generalized cardinal properties of lattices and lattice ordered groups
%J Czechoslovak Mathematical Journal
%D 2004
%P 1035-1053
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a16/
%G en
%F CMJ_2004_54_4_a16
Jakubík, Ján. Generalized cardinal properties of lattices and lattice ordered groups. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 1035-1053. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a16/

[1] G.  Birkhoff: Lattice Theory. Third Edition, Providence, 1967. | MR | Zbl

[2] P.  Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl

[3] E. K.  van Douwen: Cardinal functions on compact $F$-spaces and weakly complete Boolean algebras. Fundamenta Math. 113 (1982), 235–256.

[4] E. K.  van Douwen: Cardinal functions on Boolean spaces. In: Handbook of Boolean Algebras, J. D.  Monk and R.  Bonnet (eds.), North Holland, Amsterdam, 1989, pp. 417–467. | MR

[5] J.  Jakubík: Konvexe Ketten in $\ell $-Gruppen. Časopis pěst. mat. 84 (1959), 53–63. | MR

[6] J.  Jakubík: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85–98. | DOI | MR

[7] J.  Jakubík: Radical classes of generalized Boolean algebras. Czechoslovak Math.  J. 48 (1998), 253–268. | DOI | MR

[8] J. D.  Monk: Cardinal functions on Boolean algebras. In: Orders, Description and Roles, M. Pouzet and D. Richard (eds.), North Holland, Amsterdam, 1984, pp. 9–37. | MR | Zbl

[9] R. S.  Pierce: Some questions about complete Boolean algebras. Proc. Symp. Pure Math., Vol.  II, Lattice Theory, Amer. Math. Soc., Providence, 1961. | MR | Zbl

[10] F.  Šik: Über subdirekte Summen geordneter Gruppen. Czechoslovak Math.  J. 10 (1960), 400–424. | MR