Keywords: Fréchet; strongly Fréchet filters and spaces; product spaces
@article{CMJ_2004_54_4_a13,
author = {Jordan, Francis and Mynard, Fr\'ed\'eric},
title = {Productively {Fr\'echet} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {981--990},
year = {2004},
volume = {54},
number = {4},
mrnumber = {2100010},
zbl = {1080.54506},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a13/}
}
Jordan, Francis; Mynard, Frédéric. Productively Fréchet spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 981-990. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a13/
[1] A. Arhangel’skiĭ: The frequency spectrum of a topological space and the product operation. Trans. Moscow Math. Soc. 40 (1981), 163–200.
[2] C. Costantini and P. Simon: An $\alpha _4$, not Fréchet product of $\alpha _4$ Fréchet spaces. Topology Appl. 108 (2000), 43–52. | DOI | MR
[3] S. Dolecki: Convergence-theoretic methods in quotient quest. Topology Appl. 73 (1996), 1–21. | DOI | MR
[4] S. Dolecki: Active boundaries of upper semi-continuous and compactoid relations closed and inductively perfect maps. Rostock Math. Coll. 54 (2000), 51–68. | MR
[5] S. Dolecki and F. Mynard: Convergence-theoretic mechanism behind product theorems. Topology Appl. 104 (2000), 67–99. | DOI | MR
[6] S. Dolecki and T. Nogura: Two-fold theorem on Fréchetness of products. Czechoslovak Math. J. 49 (1999), 421–429. | DOI | MR
[7] E. van Douwen: The product of a Fréchet space and a metrizable space. Topology Appl. 47 (1992), 163–164. | DOI | MR | Zbl
[8] J. Gerlits and Z. Nagy: On Fréchet spaces. Rend. Circ. Mat. Palermo (2) 18 (1988), 51–71. | MR
[9] G. Gruenhage: A note on the product of Fréchet spaces. Topology Proc. 3 (1979), 109–115. | MR | Zbl
[10] C. Kendrick: On product of Fréchet spaces. Math. Nachr. 65 (1975), 117–123. | DOI
[11] I. Labuda: Compactoidness in topological spaces. (to appear).
[12] V. I. Malyhin: On countable spaces having no bicompactification of countable tightness. Dokl. Akad. Nauk SSR 206 (6) (1972), 1407–1411. | MR | Zbl
[13] E. Michael: A quintuple quotient quest. Gen. Topology Appl. 2 (1972), 91–138. | DOI | MR | Zbl
[14] F. Mynard: Coreflectively modified continuous duality applied to classical product theorems. Applied Gen. Top. 2 (2001), 119–154. | MR | Zbl
[15] P. Nyikos: Subsets of $\omega ^{\omega }$ and the Fréchet-Urysohn and $\alpha _i$-properties. Topology Appl. 48 (1992), 91–116. | DOI | MR
[16] T. Nogura: Product of Fréchet spaces. General Topology and its relations to modern analysis and algebra VI. Proc. Prague Topological Sympos. 86 (1988), 371–378. | MR
[17] T. Nogura: A counterexample for a problem of Arhangel’skiĭ concerning the Product of Fréchet spaces. Topology Appl. 25 (1987), 75–80. | DOI | MR
[18] J. Novák: Double convergence and products of Fréchet spaces. Czechoslovak Math. J. 48 (1998), 207–227. | DOI | MR
[19] J. Novák: A note on product of Fréchet spaces. Czechoslovak Math. J. 47 (1997), 337–340. | DOI
[20] J. Novák: Concerning the topological product of two Fréchet spaces. General Topology and its relations to modern analysis and algebra IV, Proc. Fourth Prague Topological Sympos., 1977, pp. 342–343. | MR
[21] R. C. Olson: Biquotient maps, countably bisequential spaces and related topics. Topology Appl. 4 (1974), 1–28. | DOI | MR
[22] P. Simon: A compact Fréchet space whose square is not Fréchet. Comment. Math. Univ. Carolin. 21 (1980), 749–753. | MR | Zbl
[23] K. Tamano: Product of compact Fréchet spaces. Proc. Japan Acad. Ser. A. Math. Sci. 62 (1986), 304–307. | DOI | MR
[24] S. Todorcevic: Some applications of S and L combinatorics. Annals New York Acad. Sci., 1991, pp. 130–167. | MR