Productively Fréchet spaces
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 981-990 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We solve the long standing problem of characterizing the class of strongly Fréchet spaces whose product with every strongly Fréchet space is also Fréchet.
We solve the long standing problem of characterizing the class of strongly Fréchet spaces whose product with every strongly Fréchet space is also Fréchet.
Classification : 54A20, 54B10, 54D55, 54D99, 54G20
Keywords: Fréchet; strongly Fréchet filters and spaces; product spaces
@article{CMJ_2004_54_4_a13,
     author = {Jordan, Francis and Mynard, Fr\'ed\'eric},
     title = {Productively {Fr\'echet} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {981--990},
     year = {2004},
     volume = {54},
     number = {4},
     mrnumber = {2100010},
     zbl = {1080.54506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a13/}
}
TY  - JOUR
AU  - Jordan, Francis
AU  - Mynard, Frédéric
TI  - Productively Fréchet spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 981
EP  - 990
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a13/
LA  - en
ID  - CMJ_2004_54_4_a13
ER  - 
%0 Journal Article
%A Jordan, Francis
%A Mynard, Frédéric
%T Productively Fréchet spaces
%J Czechoslovak Mathematical Journal
%D 2004
%P 981-990
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a13/
%G en
%F CMJ_2004_54_4_a13
Jordan, Francis; Mynard, Frédéric. Productively Fréchet spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 981-990. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a13/

[1] A.  Arhangel’skiĭ: The frequency spectrum of a topological space and the product operation. Trans. Moscow Math. Soc. 40 (1981), 163–200.

[2] C. Costantini and P. Simon: An $\alpha _4$, not Fréchet product of $\alpha _4$ Fréchet spaces. Topology Appl. 108 (2000), 43–52. | DOI | MR

[3] S. Dolecki: Convergence-theoretic methods in quotient quest. Topology Appl. 73 (1996), 1–21. | DOI | MR

[4] S. Dolecki: Active boundaries of upper semi-continuous and compactoid relations closed and inductively perfect maps. Rostock Math. Coll. 54 (2000), 51–68. | MR

[5] S. Dolecki and F. Mynard: Convergence-theoretic mechanism behind product theorems. Topology Appl. 104 (2000), 67–99. | DOI | MR

[6] S. Dolecki and T. Nogura: Two-fold theorem on Fréchetness of products. Czechoslovak Math. J. 49 (1999), 421–429. | DOI | MR

[7] E. van Douwen: The product of a Fréchet space and a metrizable space. Topology Appl. 47 (1992), 163–164. | DOI | MR | Zbl

[8] J. Gerlits and Z. Nagy: On Fréchet spaces. Rend. Circ. Mat. Palermo (2) 18 (1988), 51–71. | MR

[9] G. Gruenhage: A note on the product of Fréchet spaces. Topology Proc. 3 (1979), 109–115. | MR | Zbl

[10] C. Kendrick: On product of Fréchet spaces. Math. Nachr. 65 (1975), 117–123. | DOI

[11] I. Labuda: Compactoidness in topological spaces. (to appear).

[12] V. I. Malyhin: On countable spaces having no bicompactification of countable tightness. Dokl. Akad. Nauk SSR 206 (6) (1972), 1407–1411. | MR | Zbl

[13] E. Michael: A quintuple quotient quest. Gen. Topology Appl. 2 (1972), 91–138. | DOI | MR | Zbl

[14] F. Mynard: Coreflectively modified continuous duality applied to classical product theorems. Applied Gen. Top. 2 (2001), 119–154. | MR | Zbl

[15] P. Nyikos: Subsets of $\omega ^{\omega }$ and the Fréchet-Urysohn and $\alpha _i$-properties. Topology Appl. 48 (1992), 91–116. | DOI | MR

[16] T. Nogura: Product of Fréchet spaces. General Topology and its relations to modern analysis and algebra VI. Proc. Prague Topological Sympos. 86 (1988), 371–378. | MR

[17] T. Nogura: A counterexample for a problem of Arhangel’skiĭ concerning the Product of Fréchet spaces. Topology Appl. 25 (1987), 75–80. | DOI | MR

[18] J. Novák: Double convergence and products of Fréchet spaces. Czechoslovak Math. J. 48 (1998), 207–227. | DOI | MR

[19] J. Novák: A note on product of Fréchet spaces. Czechoslovak Math. J. 47 (1997), 337–340. | DOI

[20] J. Novák: Concerning the topological product of two Fréchet spaces. General Topology and its relations to modern analysis and algebra IV, Proc. Fourth Prague Topological Sympos., 1977, pp. 342–343. | MR

[21] R. C. Olson: Biquotient maps, countably bisequential spaces and related topics. Topology Appl. 4 (1974), 1–28. | DOI | MR

[22] P. Simon: A compact Fréchet space whose square is not Fréchet. Comment. Math. Univ. Carolin. 21 (1980), 749–753. | MR | Zbl

[23] K. Tamano: Product of compact Fréchet spaces. Proc. Japan Acad. Ser. A. Math. Sci. 62 (1986), 304–307. | DOI | MR

[24] S. Todorcevic: Some applications of S and L combinatorics. Annals New York Acad. Sci., 1991, pp. 130–167. | MR