A note on the oscillation of second order differential equations
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 949-954 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a sufficient condition for the oscillation of linear homogeneous second order differential equation $y^{\prime \prime }+p(x)y^{\prime }+q(x)y=0$, where $p(x), q(x)\in C[\alpha ,\infty )$ and $\alpha $ is positive real number.
We give a sufficient condition for the oscillation of linear homogeneous second order differential equation $y^{\prime \prime }+p(x)y^{\prime }+q(x)y=0$, where $p(x), q(x)\in C[\alpha ,\infty )$ and $\alpha $ is positive real number.
Classification : 34A30, 34C10
Keywords: oscillatory; second order differential equations
@article{CMJ_2004_54_4_a10,
     author = {Abdullah, Hishyar Kh.},
     title = {A note on the oscillation of second order differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {949--954},
     year = {2004},
     volume = {54},
     number = {4},
     mrnumber = {2100007},
     zbl = {1080.34506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a10/}
}
TY  - JOUR
AU  - Abdullah, Hishyar Kh.
TI  - A note on the oscillation of second order differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 949
EP  - 954
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a10/
LA  - en
ID  - CMJ_2004_54_4_a10
ER  - 
%0 Journal Article
%A Abdullah, Hishyar Kh.
%T A note on the oscillation of second order differential equations
%J Czechoslovak Mathematical Journal
%D 2004
%P 949-954
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a10/
%G en
%F CMJ_2004_54_4_a10
Abdullah, Hishyar Kh. A note on the oscillation of second order differential equations. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 949-954. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a10/

[1] A. Sauer: A note of zero-sequences of solutions of $f^{\prime \prime }+Af=0$. Amer. Math. Soc. 125 (1997), 1143–1147. | DOI | MR

[2] G. J. Butler, I. H. Erbe and A. B. Mingarelli: Riccati techniques and variational principles in oscillation theory for linear systems. Trans. Amer. Math. Soc. 303 (1987), 263–282. | DOI | MR

[3] H.  Erbe, Qinghai Kong and Shigui Ruan: Kamenev type theorems for 2nd order matrix differential systems. Proc. Amer. Math. Soc. 117 (1993), 957–962. | MR

[4] E.  Hille: Non-oscillation theorems. Trans. Amer. Math. Soc. 64 (1948), 234–252. | DOI | MR | Zbl

[5] I.  Kamenev: Integral criterion for oscillation of linear differential equations of second order. Zametki 23 (1978), 136-138. | MR | Zbl

[6] J. W. Macki and J. S. W.  Wong: Oscillation theorems for linear second order differential equations. Proc. Amer. Math. Soc. 20 (1969), 67–72. | DOI | MR

[7] A. B. Mingarelli: On a conjecture for oscillation of second order ordinary differential systems. Proc. Amer. Math. Soc. 82 (1981), 592–598. | MR | Zbl

[8] Ch. G.  Philos and I. K. Purnaras: Oscillations in superliner differential equations of second order. J. Math. Anal. Appl. 165 (1992), 1–11. | DOI | MR

[9] D.  Willett: On the oscillatory behavior of the solution of second order linear differential equations. Ann. Polon. Math. 21 (1969), 175–194. | DOI | MR

[10] J.  Yan: A note on an oscillation criterion for an equation with damped term. Proc. Amer. Math. Soc. 90 (1984), 277–280. | DOI | MR | Zbl