Hölder regularity for nonhomogeneous elliptic systems with nonlinearity greater than two
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 817-841
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Regularity results for elliptic systems of second order quasilinear PDEs with nonlinear growth of order $q>2$ are proved, extending results of [7] and [10]. In particular Hölder regularity of the solutions is obtained if the dimension $n$ is less than or equal to $q + 2$.
Regularity results for elliptic systems of second order quasilinear PDEs with nonlinear growth of order $q>2$ are proved, extending results of [7] and [10]. In particular Hölder regularity of the solutions is obtained if the dimension $n$ is less than or equal to $q + 2$.
Classification : 35B65, 35J55, 35J65
Keywords: nonlinear elliptic systems; regularity up to the boundary
@article{CMJ_2004_54_4_a0,
     author = {Idone, Giovanna},
     title = {H\"older regularity for nonhomogeneous elliptic systems with nonlinearity greater than two},
     journal = {Czechoslovak Mathematical Journal},
     pages = {817--841},
     year = {2004},
     volume = {54},
     number = {4},
     mrnumber = {2099997},
     zbl = {1080.35031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a0/}
}
TY  - JOUR
AU  - Idone, Giovanna
TI  - Hölder regularity for nonhomogeneous elliptic systems with nonlinearity greater than two
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 817
EP  - 841
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a0/
LA  - en
ID  - CMJ_2004_54_4_a0
ER  - 
%0 Journal Article
%A Idone, Giovanna
%T Hölder regularity for nonhomogeneous elliptic systems with nonlinearity greater than two
%J Czechoslovak Mathematical Journal
%D 2004
%P 817-841
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a0/
%G en
%F CMJ_2004_54_4_a0
Idone, Giovanna. Hölder regularity for nonhomogeneous elliptic systems with nonlinearity greater than two. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 817-841. http://geodesic.mathdoc.fr/item/CMJ_2004_54_4_a0/

[1] S. Campanato: Equazioni ellittiche del secondo ordine e spazi $L^{2, \lambda }$. Ann. Mat. Pura e Appl. 69 (1965), 321–381. | DOI | MR

[2] S. Campanato: Sistemi ellittici in forma di divergenza. Regolarità all’interno. Quaderni S.N.S. di Pisa, 1980. | MR

[3] S. Campanato: Elliptic systems with nonlinearity  $q$ greater or equal to two. Regularity of the solution of the Dirichlet Problem. Ann. Mat. Pura e Appl. 147 (1987), 117–150. | DOI | MR | Zbl

[4] S. Campanato: A maximum principle for nonlinear elliptic systems. Boundary fundamental estimates. Advances in Math. 66 (1987), 291–317. | DOI | MR | Zbl

[5] S. Campanato: A maximum principle for nonlinear elliptic systems. Atti Convegno commem. di M. Picone e L. Tonelli vol. , Acc. Lincei, Roma, 1985, pp. 173–182.

[6] E. De Giorgi: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. 1 (1968), 135–137. | MR

[7] L. Fattorusso, G. Idone: Hölder regularity for nonlinear nonhomogeneous elliptic systems. Le Matematiche 50 (1995), 285–306. | MR

[8] J. Frehse: On the boundedness of weak solutions of higher order nonlinear elliptic partial differential equations. Boll. Un. Mat. Ital. 4 (1970), 607–627. | MR | Zbl

[9] J. Serrin: Local behaviour of solutions of quasilinear equations. Acta Math. 111 (1964), 247–302. | DOI | MR

[10] K. Widman: Hölder continuity of solutions of elliptic systems. Manuscripta Math. 5 (1971), 299–308. | DOI | MR | Zbl