Keywords: strong $\rho $-integral; multipliers; dual space
@article{CMJ_2004_54_3_a8,
author = {Tuo-Yeong, Lee},
title = {A full characterization of multipliers for the strong $\rho$-integral in the euclidean space},
journal = {Czechoslovak Mathematical Journal},
pages = {657--674},
year = {2004},
volume = {54},
number = {3},
mrnumber = {2086723},
zbl = {1080.26007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a8/}
}
Tuo-Yeong, Lee. A full characterization of multipliers for the strong $\rho$-integral in the euclidean space. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 657-674. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a8/
[1] A. Alexiewicz: Linear functionals on Denjoy-integrable functions. Colloq. Math. 1 (1948), 289–293. | DOI | MR | Zbl
[2] R. A. Gordon: The Integrals of Lebesgue. Denjoy, Perron, and Henstock, Graduate Studies in Mathematics Volume 4, AMS, 1994. | MR | Zbl
[3] J. Jarník and Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (120) (1995), 79–106. | MR
[4] J. Kurzweil: On multiplication of Perron integrable functions. Czechoslovak Math. J. 23 (98) (1973), 542–566. | MR | Zbl
[5] J. Kurzweil and J. Jarník: Perron-type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence. Czechoslovak Math. J. 46 (121) (1996), 1–20. | MR
[6] Lee Peng Yee: Lanzhou Lectures on Henstock integration. World Scientific, 1989. | MR | Zbl
[7] Lee Peng Yee and Rudolf Výborný: The integral: An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000. | MR
[8] Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee: Characterisation of multipliers for the double Henstock integrals. Bull. Austral. Math. Soc. 54 (1996), 441–449. | DOI | MR
[9] Lee Tuo Yeong: Multipliers for some non-absolute integrals in the Euclidean spaces. Real Anal. Exchange 24 (1998/99), 149–160. | MR
[10] G. Q. Liu: The dual of the Henstock-Kurzweil space. Real Anal. Exchange 22 (1996/97), 105–121. | MR
[11] E. J. McShane: Integration. Princeton Univ. Press, 1944. | MR | Zbl
[12] Piotr Mikusiński and K. Ostaszewski: The space of Henstock integrable functions II. In: New integrals. Proc. Henstock Conf., Coleraine / Ireland, P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer (eds.), 1988.
[13] K. M. Ostaszewski: The space of Henstock integrable functions of two variables. Internat. J. Math. Math. Sci. 11 (1988), 15–22. | DOI | MR | Zbl
[14] S. Saks: Theory of the Integral, second edition. New York, 1964 63.0183.05. | MR
[15] W. L. C. Sargent: On the integrability of a product. J. London Math. Soc. 23 (1948), 28–34. | DOI | MR | Zbl
[16] W. H. Young: On multiple integration by parts and the second theorem of the mean. Proc. London Math. Soc. 16 (1918), 273–293.