Keywords: variable density; shear-dependent viscosity; power law; Carreau’s laws; weak solution; strong solution; periodic boundary conditions
@article{CMJ_2004_54_3_a7,
author = {Guill\'en-Gonz\'alez, F.},
title = {Density-dependent incompressible fluids with {non-Newtonian} viscosity},
journal = {Czechoslovak Mathematical Journal},
pages = {637--656},
year = {2004},
volume = {54},
number = {3},
mrnumber = {2086722},
zbl = {1080.35004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a7/}
}
Guillén-González, F. Density-dependent incompressible fluids with non-Newtonian viscosity. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 637-656. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a7/
[1] S. A. Antonzev and A. V. Kazhikhov: Mathematical Study of Flows of Non-Homogeneous Fluids. Lectures at the University of Novosibirsk, U.S.S.R, 1973. (Russian)
[2] E. Fernández-Cara, F. Guillén and R. R. Ortega: Some theoretical results for visco-plastic and dilatant fluids with variable density. Nonlinear Anal. 28 (1997), 1079–1100. | DOI | MR
[3] J. Frehse, J. Málek and M. Steinhauer: On existence results for fluids with shear dependent viscosity—unsteady flows. Partial Differential Equations, Praha 1998 Chapman & Hall/CRC, Res. Notes Math., 406, Boca Raton, FL, 2000, pp. 121–129. | MR
[4] A. V. Kazhikhov: Resolution of boundary value problems for nonhomogeneous viscous fluids. Dokl. Akad. Nauk 216 (1974), 1008–1010. | MR
[5] O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, 1969. | MR | Zbl
[6] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, 1969. | MR | Zbl
[7] P. L. Lions: Mathematical Topics in Fluid Mechanics. Volume 1, Incompressible models. Clarendon Press, 1996. | MR
[8] J. Málek, K. R. Rajagopal and M. Růžička: Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models and Methods in Applied Sciences 5 (1995), 789–812. | MR
[9] J. Málek, J. Nečas, M. Rokyta and M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman & Hall, 1996. | MR
[10] J. Málek, J. Nečas and M. Růžička: On weak solutions of non-Newtonian incompressible fluids in bounded three-dimensional domains. The case $p \ge 2$. Advances in Differential Equations 6 (2001), 257–302. | MR
[11] J. Simon: Compact sets in $L^p(0,T;B)$. Ann. Mat. Pura Appl. 4 (1987), 65–96. | MR