Density-dependent incompressible fluids with non-Newtonian viscosity
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 637-656
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the system of PDEs describing unsteady flows of incompressible fluids with variable density and non-constant viscosity. Indeed, one considers a stress tensor being a nonlinear function of the symmetric velocity gradient, verifying the properties of $p$-coercivity and $(p-1)$-growth, for a given parameter $p > 1$. The existence of Dirichlet weak solutions was obtained in [2], in the cases $p \ge 12/5$ if $d = 3$ or $p \ge 2$ if $d = 2$, $d$ being the dimension of the domain. In this paper, with help of some new estimates (which lead to point-wise convergence of the velocity gradient), we obtain the existence of space-periodic weak solutions for all $p \ge 2$. In addition, we obtain regularity properties of weak solutions whenever $p \ge 20/9$ (if $d = 3$) or $p \ge 2$ (if $d = 2$). Further, some extensions of these results to more general stress tensors or to Dirichlet boundary conditions (with a Newtonian tensor large enough) are obtained.
We study the system of PDEs describing unsteady flows of incompressible fluids with variable density and non-constant viscosity. Indeed, one considers a stress tensor being a nonlinear function of the symmetric velocity gradient, verifying the properties of $p$-coercivity and $(p-1)$-growth, for a given parameter $p > 1$. The existence of Dirichlet weak solutions was obtained in [2], in the cases $p \ge 12/5$ if $d = 3$ or $p \ge 2$ if $d = 2$, $d$ being the dimension of the domain. In this paper, with help of some new estimates (which lead to point-wise convergence of the velocity gradient), we obtain the existence of space-periodic weak solutions for all $p \ge 2$. In addition, we obtain regularity properties of weak solutions whenever $p \ge 20/9$ (if $d = 3$) or $p \ge 2$ (if $d = 2$). Further, some extensions of these results to more general stress tensors or to Dirichlet boundary conditions (with a Newtonian tensor large enough) are obtained.
Classification : 35B10, 35D05, 35M10, 35Q35, 76A05, 76D03
Keywords: variable density; shear-dependent viscosity; power law; Carreau’s laws; weak solution; strong solution; periodic boundary conditions
@article{CMJ_2004_54_3_a7,
     author = {Guill\'en-Gonz\'alez, F.},
     title = {Density-dependent incompressible fluids with {non-Newtonian} viscosity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {637--656},
     year = {2004},
     volume = {54},
     number = {3},
     mrnumber = {2086722},
     zbl = {1080.35004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a7/}
}
TY  - JOUR
AU  - Guillén-González, F.
TI  - Density-dependent incompressible fluids with non-Newtonian viscosity
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 637
EP  - 656
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a7/
LA  - en
ID  - CMJ_2004_54_3_a7
ER  - 
%0 Journal Article
%A Guillén-González, F.
%T Density-dependent incompressible fluids with non-Newtonian viscosity
%J Czechoslovak Mathematical Journal
%D 2004
%P 637-656
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a7/
%G en
%F CMJ_2004_54_3_a7
Guillén-González, F. Density-dependent incompressible fluids with non-Newtonian viscosity. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 637-656. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a7/

[1] S. A. Antonzev and A. V. Kazhikhov: Mathematical Study of Flows of Non-Homogeneous Fluids. Lectures at the University of Novosibirsk, U.S.S.R, 1973. (Russian)

[2] E. Fernández-Cara, F. Guillén and R. R. Ortega: Some theoretical results for visco-plastic and dilatant fluids with variable density. Nonlinear Anal. 28 (1997), 1079–1100. | DOI | MR

[3] J. Frehse, J. Málek and M. Steinhauer: On existence results for fluids with shear dependent viscosity—unsteady flows. Partial Differential Equations, Praha 1998 Chapman & Hall/CRC, Res. Notes Math., 406, Boca Raton, FL, 2000, pp. 121–129. | MR

[4] A. V. Kazhikhov: Resolution of boundary value problems for nonhomogeneous viscous fluids. Dokl. Akad. Nauk 216 (1974), 1008–1010. | MR

[5] O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, 1969. | MR | Zbl

[6] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, 1969. | MR | Zbl

[7] P. L. Lions: Mathematical Topics in Fluid Mechanics. Volume 1, Incompressible models. Clarendon Press, 1996. | MR

[8] J. Málek, K. R. Rajagopal and M. Růžička: Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models and Methods in Applied Sciences 5 (1995), 789–812. | MR

[9] J. Málek, J. Nečas, M. Rokyta and M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman & Hall, 1996. | MR

[10] J. Málek, J. Nečas and M. Růžička: On weak solutions of non-Newtonian incompressible fluids in bounded three-dimensional domains. The case $p \ge 2$. Advances in Differential Equations 6 (2001), 257–302. | MR

[11] J. Simon: Compact sets in $L^p(0,T;B)$. Ann. Mat. Pura Appl. 4 (1987), 65–96. | MR