On pure quotients and pure subobjects
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 623-636
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the theory of accessible categories, pure subobjects, i.e. filtered colimits of split monomorphisms, play an important role. Here we investigate pure quotients, i.e., filtered colimits of split epimorphisms. For example, in abelian, finitely accessible categories, these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the kernels of pure quotients.
In the theory of accessible categories, pure subobjects, i.e. filtered colimits of split monomorphisms, play an important role. Here we investigate pure quotients, i.e., filtered colimits of split epimorphisms. For example, in abelian, finitely accessible categories, these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the kernels of pure quotients.
Classification : 18A99, 18E99
Keywords: pure quotient; pure subobject; locally presentable category; semi-abelian category; abelian category
@article{CMJ_2004_54_3_a6,
     author = {Ad\'amek, J. and Rosick\'y, J.},
     title = {On pure quotients and pure subobjects},
     journal = {Czechoslovak Mathematical Journal},
     pages = {623--636},
     year = {2004},
     volume = {54},
     number = {3},
     mrnumber = {2086721},
     zbl = {1080.18500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a6/}
}
TY  - JOUR
AU  - Adámek, J.
AU  - Rosický, J.
TI  - On pure quotients and pure subobjects
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 623
EP  - 636
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a6/
LA  - en
ID  - CMJ_2004_54_3_a6
ER  - 
%0 Journal Article
%A Adámek, J.
%A Rosický, J.
%T On pure quotients and pure subobjects
%J Czechoslovak Mathematical Journal
%D 2004
%P 623-636
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a6/
%G en
%F CMJ_2004_54_3_a6
Adámek, J.; Rosický, J. On pure quotients and pure subobjects. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 623-636. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a6/

[1] J.  Adámek and J.  Rosický: Locally Presentable and Accessible Categories. Cambridge Univ. Press, Cambridge, 1994. | MR

[2] D.  Bourn: Normal subobjects and abelian objects in protomodular categories. J.  Algebra 228 (2000), 143–164. | DOI | MR | Zbl

[3] S.  Fakir: Objects algébraiquement clos et injectifs dans les catégories localement présentables. Bull. Soc. Math. France 42 (1975). | MR

[4] G.  Janelidze, S.  Márki and W.  Tholen: Semi-abelian categories. 168 (2002), 367–386. | MR

[5] C.  Lair: Catégories modélables et catégories esquissables. Diagrammes (1981), 1–20. | MR | Zbl

[6] M.  Makkai and R.  Paré: Accessible categories: The foundations of categorical model theory. Contemp. Math. Vol. 104, Amer. Math. Soc., Providence, 1989. | DOI | MR

[7] P.  Rothmaler: Purity in model theory. In: Advances in Algebra and Model Theory, M.  Droste and R.  Göbel (eds.), Gordon and Breach, , 1997, pp. 445–469. | MR | Zbl