Keywords: lattices; central elements; factor congruences; varieties
@article{CMJ_2004_54_3_a5,
author = {Freytes, Hector},
title = {An algebraic version of the {Cantor-Bernstein-Schr\"oder} theorem},
journal = {Czechoslovak Mathematical Journal},
pages = {609--621},
year = {2004},
volume = {54},
number = {3},
mrnumber = {2086720},
zbl = {1080.06008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a5/}
}
Freytes, Hector. An algebraic version of the Cantor-Bernstein-Schröder theorem. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 609-621. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a5/
[1] R. Balbes and Ph. Dwinger: Distributive Lattices. University of Missouri Press, Columbia, 1974. | MR
[2] G. Birkhoff: Lattice Theory, Third Edition. AMS, Providence, 1967. | MR
[3] V. Boicescu, A, Filipoiu, G. Georgescu and S. Rudeanu: Łukasiewicz-Moisil Algebras. North-Holland, Amsterdam, 1991. | MR
[4] R. Cignoli: Representation of Łukasiewicz and Post algebras by continuous functions. Colloq. Math. 24 (1972), 127–138. | DOI | MR | Zbl
[5] R. Cignoli: Lectures at Buenos Aires University. 2000.
[6] R. Cignoli, M. I. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht, 2000. | MR
[7] R. Cignoli and A. Torrens: An algebraic analysis of product logic. Multiple Valued Logic 5 (2000), 45–65. | MR
[8] A. De Simone, D. Mundici and M. Navara: A Cantor-Bernstein Theorem for complete $MV$-algebras. Czechoslovak Math. J 53 (2003), 437–447. | DOI | MR
[9] A. De Simone, M. Navara and P. Pták: On interval homogeneous orthomodular lattices. Comment. Math. Univ. Carolin. 42 (2001), 23–30. | MR
[10] A. Dvurečenskij: Pseudo $MV$-algebras are intervals in $l$-groups. J. Austral. Math. Soc. (Ser. A) 72 (2002), 427–445. | DOI | MR
[11] A. Dvurečenskij: On pseudo $MV$-algebras. Soft Computing 5 (2001), 347–354. | DOI | MR
[12] G. Georgescu and A. Iorgulescu: Pseudo $MV$-algebras. 6 (2001), 95–135. | MR
[13] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998. | MR
[14] U. Höhle: Commutative, residuated $l$-monoids. In: Non-Classical Logics and their Applications to Fuzzy Subset. A Handbook on the Mathematical Foundations of Fuzzy Set Theory, U. Höhle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995. | MR
[15] J. Jakubík: A theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete pseudo $MV$-algebras. Czechoslovak Math. J (to appear). | MR
[16] J. A. Kalman: Lattices with involution. Trans. Amer. Math. Soc. 87 (1958), 485–491. | DOI | MR | Zbl
[17] S. Koppelberg: Handbook of Boolean Algebras, Vol. 1 (J. Donald Monk, ed.). North Holland, Amsterdam, 1989. | MR
[18] T. Kowalski and H. Ono: Residuated Lattices: An algebraic glimpse at logics without contraction. Preliminary report, 2000.
[19] F. Maeda and S. Maeda: Theory of Symmetric Lattices. Springer-Verlag, Berlin, 1970. | MR
[20] R. Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140–144. | DOI | MR
[21] A. Tarski: Cardinal Algebras. Oxford University Press, New York, 1949. | MR | Zbl