On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 591-607
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce and investigate a Henstock-Kurzweil-type integral for Riesz-space-valued functions defined on (not necessarily bounded) subintervals of the extended real line. We prove some basic properties, among them the fact that our integral contains under suitable hypothesis the generalized Riemann integral and that every simple function which vanishes outside of a set of finite Lebesgue measure is integrable according to our definition, and in this case our integral coincides with the usual one.
In this paper we introduce and investigate a Henstock-Kurzweil-type integral for Riesz-space-valued functions defined on (not necessarily bounded) subintervals of the extended real line. We prove some basic properties, among them the fact that our integral contains under suitable hypothesis the generalized Riemann integral and that every simple function which vanishes outside of a set of finite Lebesgue measure is integrable according to our definition, and in this case our integral coincides with the usual one.
Classification : 28B05, 28B10, 28B15, 46G10
Keywords: Riesz spaces; Henstock-Kurzweil integral
@article{CMJ_2004_54_3_a4,
     author = {Boccuto, A. and Rie\v{c}an, B.},
     title = {On the {Henstock-Kurzweil} integral for {Riesz-space-valued} functions defined on unbounded intervals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {591--607},
     year = {2004},
     volume = {54},
     number = {3},
     mrnumber = {2086719},
     zbl = {1080.28007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a4/}
}
TY  - JOUR
AU  - Boccuto, A.
AU  - Riečan, B.
TI  - On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 591
EP  - 607
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a4/
LA  - en
ID  - CMJ_2004_54_3_a4
ER  - 
%0 Journal Article
%A Boccuto, A.
%A Riečan, B.
%T On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals
%J Czechoslovak Mathematical Journal
%D 2004
%P 591-607
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a4/
%G en
%F CMJ_2004_54_3_a4
Boccuto, A.; Riečan, B. On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 591-607. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a4/

[1] A. Boccuto: Differential and integral calculus in Riesz spaces. Tatra Mt. Math. Publ. 14 (1998), 293–323. | MR

[2] M. Duchoň and B. Riečan: On the Kurzweil-Stieltjes integral in ordered spaces. Tatra Mt. Math. Publ. 8 (1996), 133–141. | MR

[3] D. H. Fremlin: Topological Riesz Spaces and Measure Theory. Cambridge Univ. Press, 1994. | MR

[4] D. H. Fremlin: A direct proof of the Matthes-Wright integral extension theorem. J.  London Math. Soc. 11 (1975), 276–284. | MR | Zbl

[5] L. P. Lee and R. Výborný: The integral: An easy approach after Kurzweil and Henstock. Cambridge Univ. Press, 2000. | MR

[6] B. Riečan: On the Kurzweil integral for functions with values in ordered spaces  I. Acta Math. Univ. Comenian. 56–57 (1990), 75–83. | MR

[7] B. Riečan: On operator valued measures in lattice ordered groups. Atti Sem. Mat. Fis. Univ. Modena 41 (1993), 235–238. | MR

[8] B. Riečan and T. Neubrunn: Integral, Measure and Ordering. Kluwer Academic Publishers/Ister Science, 1997. | MR

[9] B. Riečan and M. Vrábelová: On the Kurzweil integral for functions with values in ordered spaces  II. Math. Slovaca 43 (1993), 471–475. | MR

[10] B. Riečan and M. Vrábelová: On integration with respect to operator valued measures in Riesz spaces. Tatra Mt. Math. Publ. 2 (1993), 149–165. | MR

[11] B. Riečan and M. Vrábelová: On the Kurzweil integral for functions with values in ordered spaces  III. Tatra Mt. Math. Publ. 8 (1996), 93–100. | MR

[12] B. Riečan and M. Vrábelová: The Kurzweil construction of an integral in ordered spaces. Czechoslovak Math.  J. 48(123) (1998), 565–574. | DOI | MR

[13] J. D. M. Wright: The measure extension problem for vector lattices. Ann. Inst. Fourier Grenoble 21 (1971), 65–85. | DOI | MR | Zbl