Boundedness of Riesz potential generated by generalized shift operator on $Ba$ spaces
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 579-589
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the boundedness of the Riesz potential generated by generalized shift operator $I^{\alpha }_{B_{k}}$ from the spaces ${a = (L_{p_{m}, \nu } (\mathbb{R}_n^k), a_m)}$ to the spaces ${a^{\prime }= (L_{q_{m}, \nu } (\mathbb{R}_n^k), a^{\prime }_m)}$ is examined.
In this paper, the boundedness of the Riesz potential generated by generalized shift operator $I^{\alpha }_{B_{k}}$ from the spaces ${a = (L_{p_{m}, \nu } (\mathbb{R}_n^k), a_m)}$ to the spaces ${a^{\prime }= (L_{q_{m}, \nu } (\mathbb{R}_n^k), a^{\prime }_m)}$ is examined.
Classification : 45E10, 47B37, 47G10
Keywords: generalized shift operator; Riesz-Bessel transformations
@article{CMJ_2004_54_3_a3,
     author = {Ṣerbetci, Ayhan and Ekincio\u{g}lu, Ismail},
     title = {Boundedness of {Riesz} potential generated by generalized shift operator on $Ba$ spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {579--589},
     year = {2004},
     volume = {54},
     number = {3},
     mrnumber = {2086718},
     zbl = {1080.47503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a3/}
}
TY  - JOUR
AU  - Ṣerbetci, Ayhan
AU  - Ekincioğlu, Ismail
TI  - Boundedness of Riesz potential generated by generalized shift operator on $Ba$ spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 579
EP  - 589
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a3/
LA  - en
ID  - CMJ_2004_54_3_a3
ER  - 
%0 Journal Article
%A Ṣerbetci, Ayhan
%A Ekincioğlu, Ismail
%T Boundedness of Riesz potential generated by generalized shift operator on $Ba$ spaces
%J Czechoslovak Mathematical Journal
%D 2004
%P 579-589
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a3/
%G en
%F CMJ_2004_54_3_a3
Ṣerbetci, Ayhan; Ekincioğlu, Ismail. Boundedness of Riesz potential generated by generalized shift operator on $Ba$ spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 579-589. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a3/

[1] I. A.  Aliev: On Riesz transformations generated by a generalized shift operator. Izvestiya Acad. of Sciences of Azerbaydian 1 (1987), 7–13. | MR

[2] I. A.  Aliev and A. D.  Gadzhiev: Weighted estimates for multidimensional singular integrals generated by the generalized shift operator. Matematika Sbornik Rossiyskaya Akad. Nauk 183 (1992), 45–66 English translation. | MR

[3] W. D.  Chang: Boundedness of the Calderon-Zygmund singular integral operators on B$a$ spaces. Proc. Amer. Math. Soc. 109 (1990), 403–408. | MR

[4] W. D.  Chang: The boundedness of some integral operators in a new class of function spaces. Acta Math. Sci. 4 (1984), 381–396. | MR

[5] X.  Ding and P.  Luo: B$a$ spaces and some estimates of Laplace operators. J. Systems Sci. Math. Sci. 1 (1981), 9–33. | MR

[6] Y.  Deng and Y.  Gu: A new class of function spaces and Hilbert transform. J. Math. Anal. Appl. 108 (1985), 99–106. | DOI | MR

[7] Y.  Deng, W.  Chang and Y.  Li: On Boundedness of Riesz Transform and the Riesz Potential in B$a$ Spaces, Theory of B$a$ spaces and its applications. Science Press, Beijing, 1999, pp. 63–72. | MR

[8] A. D.  Gadzhiev and I. A.  Aliev: On a potential like operators generated by the generalized shift operator. Vekua Inst. Applied Math. 3 (1988), 21–24.

[9] I.  Ekincioglu and I. Kaya Özkin: On high order Riesz transformations generated by a generalized shift operator. Tr. J. Math. 21 (1997), 51–60. | MR

[10] I.  Ekincioglu and A.  Serbetci: On the singular integral operators generated by the generalized shift operator. Int. J. App. Math. 1 (1999), 29–38. | MR

[11] B. M.  Levitan: Bessel function expansions in series and fourier integrals. Uspekhi Mat. Nauk 6 (1951), 102–143. | MR

[12] E. M.  Stein: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, N. J., 1970. | MR | Zbl