Keywords: Banach function space; uniformly upper; uniformly lower $\ell $-estimate; Hardy type operator
@article{CMJ_2004_54_3_a20,
author = {Kopaliani, T. S.},
title = {On some structural properties of {Banach} function spaces and boundedness of certain integral operators},
journal = {Czechoslovak Mathematical Journal},
pages = {791--805},
year = {2004},
volume = {54},
number = {3},
mrnumber = {2086735},
zbl = {1080.47040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a20/}
}
TY - JOUR AU - Kopaliani, T. S. TI - On some structural properties of Banach function spaces and boundedness of certain integral operators JO - Czechoslovak Mathematical Journal PY - 2004 SP - 791 EP - 805 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a20/ LA - en ID - CMJ_2004_54_3_a20 ER -
Kopaliani, T. S. On some structural properties of Banach function spaces and boundedness of certain integral operators. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 791-805. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a20/
[1] C. Bennett and R. Sharpley: Interpolation of Operators. Acad. Press, Boston, 1988. | MR
[2] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces. II. Function Spaces. Springer-Verlag, , 1979. | MR
[3] A. V. Bukhvalov, V. B. Korotkov, A. G. Kusraev, S. S. Kutateladze and B. M. Makarov: Vector Lattices and Integral Operators. Nauka, Novosibirsk, 1992. (Russian) | MR
[4] J. Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Springer-Verlag, Berlin-Heidelberg-New York, 1983. | MR
[5] V. D. Stepanov: Nonlinear Analysis. Function Spaces and Applications 5. Olympia Press, 1994, pp. 139–176. | MR
[6] E. N. Lomakina and V. D. Stepanov: On Hardy type operators in Banach function spaces on half-line. Dokl. Akad. Nauk 359 (1998), 21–23. (Russian) | MR
[7] P. Oinarov: Two-side estimates of the norm of some classes of integral operators. Trudy Mat. Inst. Steklov. 204 (1993), 240–250. (Russian) | MR
[8] A. V. Bukhvalov: Generalization of Kolmogorov-Nagumo’s theorem on tensor product. Kachestv. pribl. metod. issledov. operator. uravnen. 4 (1979), 48–65. (Russian)
[9] E. I. Berezhnoi: Sharp estimates for operators on cones in ideal spaces. Trudy Mat. Inst. Steklov. 204 (1993), 3–36. (Russian) | MR
[10] E. I. Berezhnoi: Two-weighted estimations for the Hardy–Littlwood maximal function in ideal Banach spaces. Proc. Amer. Math. Soc. 127 (1999), 79–87. | DOI | MR
[11] Q. Lai: Weighted modular inequalities for Hardy type operators. Proc. London Math. Soc. 79 (1999), 649–672. | MR | Zbl
[12] I. I. Sharafutdinov: On the basisity of the Haar system in $L^{p(t)}([0,1])$ spaces. Mat. Sbornik 130 (1986), 275–283. (Russian)
[13] I. I. Sharafutdinov: The topology of the space $L^{p(t)}([0,1])$. Mat. Zametki 26 (1976), 613–632. (Russian)
[14] O. Kováčik and J. Rákosník: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. 41 (1991), 592–618. | MR
[15] H. H. Schefer: Banach Lattices and Positive Operators. Springer-Verlag, Berlin-Heidelberg-New York, 1974.