Keywords: module; inverse polynomial module; injective module; projective modules
@article{CMJ_2004_54_3_a2,
author = {Park, Sangwon and Cho, Eunha},
title = {Injective and projective properties of $R[x]$-modules},
journal = {Czechoslovak Mathematical Journal},
pages = {573--578},
year = {2004},
volume = {54},
number = {3},
mrnumber = {2086717},
zbl = {1080.16502},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a2/}
}
Park, Sangwon; Cho, Eunha. Injective and projective properties of $R[x]$-modules. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 573-578. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a2/
[1] A. S. McKerrow: On the injective dimension of modules of power series. Quart. J. Math. Oxford 25 (1974), 359–368. | DOI | MR | Zbl
[2] L. Melkersson: Content and inverse polynomials on artinian modules. Comm. Algebra 26 (1998), 1141–1145. | DOI | MR | Zbl
[3] D. G. Northcott: Injective envelopes and inverse polynomials. London Math. Soc. 3 (1974), 290–296. | DOI | MR | Zbl
[4] S. Park: Inverse ploynomials and injective covers. Comm. Algebra 21 (1993), 4599–4613. | DOI | MR
[5] S. Park: The Macaulay-Northcott functor. Arch. Math. (Basel) 63 (1994), 225–230. | DOI | MR | Zbl
[6] S. Park: Gorenstein rings and inverse polynomials. Comm. Algebra 28 (2000), 785–789. | DOI | MR | Zbl
[7] S. Park: Left global dimensions and inverse polynomil modules. Internat. J. Math. Math. Sci. 24 (2000), 437–440. | DOI | MR
[8] S. Park: The general structure of inverse polynomial modules. Czechoslovak Math. J. 51(126) (2001), 343–349. | DOI | MR | Zbl