On prime modules over pullback rings
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 781-789
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if $R$ is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime $R$-modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings.
First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if $R$ is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime $R$-modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings.
Classification : 13C05, 13C11, 13C13, 13F05, 16D70
Keywords: indecomposable prime modules; pullback rings; separated modules
@article{CMJ_2004_54_3_a19,
     author = {Atani, Shahabaddin Ebrahimi},
     title = {On prime modules over pullback rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {781--789},
     year = {2004},
     volume = {54},
     number = {3},
     mrnumber = {2086734},
     zbl = {1080.13507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a19/}
}
TY  - JOUR
AU  - Atani, Shahabaddin Ebrahimi
TI  - On prime modules over pullback rings
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 781
EP  - 789
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a19/
LA  - en
ID  - CMJ_2004_54_3_a19
ER  - 
%0 Journal Article
%A Atani, Shahabaddin Ebrahimi
%T On prime modules over pullback rings
%J Czechoslovak Mathematical Journal
%D 2004
%P 781-789
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a19/
%G en
%F CMJ_2004_54_3_a19
Atani, Shahabaddin Ebrahimi. On prime modules over pullback rings. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 781-789. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a19/

[1] J. Dauns: Prime modules. Reine angew Math. 298 (1978), 156–181. | MR | Zbl

[2] J. Dauns: ARRAY(0xa1e66e8). 1980, pp. 301–303. | MR

[3] J. Dauns: Modules and Rings. Cambridge University Press, Cambridge, 1994. | MR | Zbl

[4] S. Ebrahimi Atani: On pure-injective modules over pullback rings. Comm. Algebra 28 (2000), 4037–4069. | DOI | MR | Zbl

[5] S. Ebrahimi Atani: I-Torsion-free modules over pullback rings. Honam Math. J. 22 (2000), 1–7. | MR | Zbl

[6] S. Ebrahimi Atani: On secondary modules over Dedekind domains. South-east Asian Bulletin 25 (2001), 1–6. | DOI | MR

[7] S. Ebrahimi Atani: On secondary modules over pullback rings. Comm. Algebra 30 (2002), 2675–2685. | DOI | MR | Zbl

[8] L. Fuchs and L. Salce: Modules over Valuation Domains. Lecture Notes in Pure and Applied Mathematics, 1985. | MR

[9] L. Levy: Modules over pullbacks and subdirect sums. J. Algebra 71 (1981), 50–61. | DOI | MR | Zbl

[10] L. Levy: Mixed modules over $\mathbb{Z}G$, $G$ cyclic of prime order, and over related Dedekind pullbacks. J. Algebra 71 (1981), 62–114. | DOI | MR

[11] L. Levy: Modules over Dedekind-like rings. J. Algebra 93 (1981), 1–116. | MR

[12] C. P. Lu: Prime submodules of modules. Comm. Univ. Sancti. Paulli 33 (1984), 61–69. | Zbl

[13] C. P. Lu: Spectra of modules. Comm. Algebra 23 (1995), 3741–3752. | DOI | MR | Zbl

[14] I. G. Macdonald: Secondary representation of modules over a commutative ring. Symposia Matematica 11 (Istituto Nazionale di alta Matematica), Roma, 1973, pp. 23–43. | MR | Zbl

[15] M. Prest: Model Theory and Modules. London Math. Soc. Lecture Note Series. Cambridge University Press, 1988. | MR

[16] Y. Tiras, A. Tercan and A. Harmanci: Prime modules. Honam Math. J. 18 (1996), 5–15. | MR

[17] S. Yassemi: The dual notion of prime submodules. Arch. Math. 37 (2001), 273–278. | MR | Zbl