Keywords: Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; $k$-th modulus of continuity
@article{CMJ_2004_54_3_a16,
author = {Israfilov, Daniyal M.},
title = {Approximation by $p${-Faber-Laurent} rational functions in the weighted {Lebesgue} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {751--765},
year = {2004},
volume = {54},
number = {3},
mrnumber = {2086731},
zbl = {1080.41500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a16/}
}
TY - JOUR AU - Israfilov, Daniyal M. TI - Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces JO - Czechoslovak Mathematical Journal PY - 2004 SP - 751 EP - 765 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a16/ LA - en ID - CMJ_2004_54_3_a16 ER -
Israfilov, Daniyal M. Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 751-765. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a16/
[1] S. Y. Alper: Approximation in the mean of analytic functions of class $E^p$. In: Investigations on the Modern Problems of the Function Theory of a Complex Variable, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1960, pp. 272–286. (Russian) | MR
[2] J. E. Andersson: On the degree of polynomial approximation in $E^p(D)$. J. Approx. Theory 19 (1977), 61–68. | DOI | MR
[3] A. Çavuş and D. M. Israfilov: Approximation by Faber-Laurent rational functions in the mean of functions of the class $L_{p}(\Gamma ) $ with $1. Approximation Theory App. 11 (1995), 105–118. MR 1341424
[4] G. David: Operateurs integraux singulers sur certaines courbes du plan complexe. Ann. Sci. Ecol. Norm. Super. 4 (1984), 157–189. | DOI | MR
[5] P. L. Duren: Theory of $H^p$-Spaces. Academic Press, , 1970. | MR
[6] E. M. Dyn’kin and B. P. Osilenker: Weighted estimates for singular integrals and their applications. In: Mathematical analysis, Vol. 21, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 42–129. (Russian) | MR
[7] D. Gaier: Lectures on Complex Approximation. Birkhäuser-Verlag, Boston-Stuttgart, 1987. | MR | Zbl
[8] G. M. Golusin: Geometric Theory of Functions of a Complex Variable. Translation of Mathematical Monographs, Vol. 26, AMS, 1969. | MR
[9] E. A. Haciyeva: Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolsky-Besov spaces. Author’s summary of candidates dissertation. (1986), Tbilisi. (Russian)
[10] I. I. Ibragimov and D. I. Mamedhanov: A constructive characterization of a certain class of functions. Dokl. Akad. Nauk SSSR 223 (1975), 35–37. | MR
[11] D. M. Israfilov: Approximate properties of the generalized Faber series in an integral metric. Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Math. Nauk 2 (1987), 10–14. (Russian) | MR | Zbl
[12] D. M. Israfilov: Approximation by $p$-Faber polynomials in the weighted Smirnov class $E^p(G,\omega )$ and the Bieberbach polynomials. Constr. Approx. 17 (2001), 335–351. | DOI | MR
[13] V. M. Kokilashvili: A direct theorem on mean approximation of analytic functions by polynomials. Soviet Math. Dokl. 10 (1969), 411–414. | Zbl
[14] A. I. Markushevich: Theory of Analytic Functions, Vol. 2. Izdatelstvo Nauka, Moscow, 1968.
[15] B. Muckenhoupt: Weighted norm inequalites for Hardy maximal functions. Trans. Amer. Math. Soc. 165 (1972), 207–226. | DOI | MR
[16] P. K. Suetin: Series of Faber Polynomials. Nauka, Moscow, 1984; Cordon and Breach Publishers, 1998. | MR | Zbl
[17] J. L. Walsh and H. G. Russel: Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions. Trans. Amer. Math. Soc. 92 (1959), 355–370. | DOI | MR
[18] M. Wehrens: Best approximation on the unit sphere in $R^n$. Funct. Anal. and Approx. Proc. Conf. Oberwolfach. Aug. 9-16, 1980, Basel, 1981, pp. 233–245. | MR | Zbl