Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 751-765
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $L\subset C$ be a regular Jordan curve. In this work, the approximation properties of the $p$-Faber-Laurent rational series expansions in the $\omega $ weighted Lebesgue spaces $L^p(L,\omega )$ are studied. Under some restrictive conditions upon the weight functions the degree of this approximation by a $k$th integral modulus of continuity in $L^p(L,\omega )$ spaces is estimated.
Let $L\subset C$ be a regular Jordan curve. In this work, the approximation properties of the $p$-Faber-Laurent rational series expansions in the $\omega $ weighted Lebesgue spaces $L^p(L,\omega )$ are studied. Under some restrictive conditions upon the weight functions the degree of this approximation by a $k$th integral modulus of continuity in $L^p(L,\omega )$ spaces is estimated.
Classification :
30E10, 41A10, 41A25, 41A30, 41A58
Keywords: Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; $k$-th modulus of continuity
Keywords: Faber polynomial; Faber series; weighted Lebesgue space; weighted Smirnov space; $k$-th modulus of continuity
@article{CMJ_2004_54_3_a16,
author = {Israfilov, Daniyal M.},
title = {Approximation by $p${-Faber-Laurent} rational functions in the weighted {Lebesgue} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {751--765},
year = {2004},
volume = {54},
number = {3},
mrnumber = {2086731},
zbl = {1080.41500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a16/}
}
TY - JOUR AU - Israfilov, Daniyal M. TI - Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces JO - Czechoslovak Mathematical Journal PY - 2004 SP - 751 EP - 765 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a16/ LA - en ID - CMJ_2004_54_3_a16 ER -
Israfilov, Daniyal M. Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 751-765. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a16/