Keywords: evolution family; uniform exponential expansiveness; complete admissibility
@article{CMJ_2004_54_3_a15,
author = {Megan, Mihail and Sasu, Bogdan and Sasu, Adina Lumini\c{t}a},
title = {Exponential expansiveness and complete admissibility for evolution families},
journal = {Czechoslovak Mathematical Journal},
pages = {739--749},
year = {2004},
volume = {54},
number = {3},
mrnumber = {2086730},
zbl = {1080.34546},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a15/}
}
TY - JOUR AU - Megan, Mihail AU - Sasu, Bogdan AU - Sasu, Adina Luminiţa TI - Exponential expansiveness and complete admissibility for evolution families JO - Czechoslovak Mathematical Journal PY - 2004 SP - 739 EP - 749 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a15/ LA - en ID - CMJ_2004_54_3_a15 ER -
%0 Journal Article %A Megan, Mihail %A Sasu, Bogdan %A Sasu, Adina Luminiţa %T Exponential expansiveness and complete admissibility for evolution families %J Czechoslovak Mathematical Journal %D 2004 %P 739-749 %V 54 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a15/ %G en %F CMJ_2004_54_3_a15
Megan, Mihail; Sasu, Bogdan; Sasu, Adina Luminiţa. Exponential expansiveness and complete admissibility for evolution families. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 739-749. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a15/
[1] A. Ben-Artzi, I. Gohberg and M. A. Kaashoek: Invertibility and dichotomy of differential operators on the half-line. J. Dynam. Differential Equations 5 (1993), 1–36. | DOI | MR
[2] C. Chicone and Y. Latushkin: Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surveys and Monographs, Vol. 70. Amer. Math. Soc., , 1999. | DOI | MR
[3] S. N. Chow and H. Leiva: Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces. J. Differential Equations 120 (1995), 429–477. | DOI | MR
[4] J. Daleckii and M. G. Krein: Stability of Solutions of Differential Equations in Banach Spaces. Trans. Math. Monographs 43. AMS, Providence, 1974. | MR
[5] D. Henry: Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, New York, 1981. | MR | Zbl
[6] Y. Latushkin and T. Randolph: Dichotomy of differential equations on Banach spaces and algebra of weighted translation operators. Integral Equations Operator Theory 23 (1995), 472–500. | DOI | MR
[7] Y. Latushkin and R. Schnaubelt: Evolution semigroups, translation algebras and exponential dichotomy of cocycles. J. Differential Equations 159 (1999), 321–369. | DOI | MR
[8] M. Megan, A. L. Sasu and B. Sasu: On uniform exponential stability of periodic evolution operators in Banach spaces. Acta Math. Univ. Comenian. 69 (2000), 97–106. | MR
[9] M. Megan, A. L. Sasu and B. Sasu: On uniform exponential stability of linear skew-product semiflows in Banach spaces. Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143–154. | DOI | MR
[10] M. Megan, A. L. Sasu and B. Sasu: Discrete admissibility and exponential dichotomy for evolution families. Discrete Contin. Dynam. Systems 9 (2003), 383–397. | MR
[11] M. Megan, B. Sasu and A. L. Sasu: On nonuniform exponential dichotomy of evolution operators in Banach spaces. Integral Equations Operator Theory 44 (2002), 71–78. | DOI | MR
[12] N. Van Minh, F. Räbiger and R. Schnaubelt: Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line. Integral Equations Operator Theory 32 (1998), 332–353. | DOI | MR
[13] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Berlin-Heidelberg-New York, 1983. | MR | Zbl
[14] V. A. Pliss and G. R. Sell: Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dynam. Differential Equations 3 (1999), 471–513. | MR