Riemann-type definition of the improper integrals
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 717-725
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Riemann-type definitions of the Riemann improper integral and of the Lebesgue improper integral are obtained from McShane’s definition of the Lebesgue integral by imposing a Kurzweil-Henstock’s condition on McShane’s partitions.
Riemann-type definitions of the Riemann improper integral and of the Lebesgue improper integral are obtained from McShane’s definition of the Lebesgue integral by imposing a Kurzweil-Henstock’s condition on McShane’s partitions.
Classification : 26A36, 26A39
Keywords: McShane’s partition; Kurzweil-Henstock’s partition
@article{CMJ_2004_54_3_a13,
     author = {Bongiorno, Donatella},
     title = {Riemann-type definition of the improper integrals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {717--725},
     year = {2004},
     volume = {54},
     number = {3},
     mrnumber = {2086728},
     zbl = {1080.26003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a13/}
}
TY  - JOUR
AU  - Bongiorno, Donatella
TI  - Riemann-type definition of the improper integrals
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 717
EP  - 725
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a13/
LA  - en
ID  - CMJ_2004_54_3_a13
ER  - 
%0 Journal Article
%A Bongiorno, Donatella
%T Riemann-type definition of the improper integrals
%J Czechoslovak Mathematical Journal
%D 2004
%P 717-725
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a13/
%G en
%F CMJ_2004_54_3_a13
Bongiorno, Donatella. Riemann-type definition of the improper integrals. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 717-725. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a13/

[1] B. Bongiorno: Un nuovo integrale per il problema delle primitive. Le Matematiche 51 (1996), 299–313.

[2] B. Bongiorno, L.  Di  Piazza and D. Preiss: A constructive minimal integral which includes Lebesgue integrable functions and derivatives. J.  London Math. Soc. 62 (2000), 117–126. | DOI | MR

[3] A. M. Bruckner, R. J.  Fleissner and J.  Foran: The minimal integral which includes Lebesgue integrable functions and derivatives. Coll. Math. 50 (1986), 289–293. | DOI | MR

[4] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Lebesgue. Graduate Studies in Math. vol. 4, AMS, 1994. | MR

[5] E. J. McShane: A unified theory of integration. Amer. Math. Monthly 80 (1973), 349–359. | DOI | MR | Zbl

[6] K. Kurzweil: Nichtabsolut Konvergente Integrale. Teubner, Leipzig, 1980. | MR | Zbl

[7] W. F.  Pfeffer: The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993. | MR | Zbl

[8] S. Saks: Theory of the Integral. Dover, New York, 1964. | MR