On equitorsion holomorphically projective mappings of generalized Kählerian spaces
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 701-715
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate holomorphically projective mappings of generalized Kählerian spaces. In the case of equitorsion holomorphically projective mappings of generalized Kählerian spaces we obtain five invariant geometric objects for these mappings.
In this paper we investigate holomorphically projective mappings of generalized Kählerian spaces. In the case of equitorsion holomorphically projective mappings of generalized Kählerian spaces we obtain five invariant geometric objects for these mappings.
Classification : 53B05, 53B35
Keywords: Generalized Riemannian space; Kählerian space; generalized Kählerian space; holomorphically projective mapping; equitorsion holomorphically projective mapping; holomorphically projective parameter; holomorphically projective tensor
@article{CMJ_2004_54_3_a12,
     author = {Stankovi\'c, Mi\'ca S. and Min\v{c}i\'c, Svetislav M. and Velimirovi\'c, Ljubica S.},
     title = {On equitorsion holomorphically projective mappings of generalized {K\"ahlerian} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {701--715},
     year = {2004},
     volume = {54},
     number = {3},
     mrnumber = {2086727},
     zbl = {1080.53016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a12/}
}
TY  - JOUR
AU  - Stanković, Mića S.
AU  - Minčić, Svetislav M.
AU  - Velimirović, Ljubica S.
TI  - On equitorsion holomorphically projective mappings of generalized Kählerian spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 701
EP  - 715
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a12/
LA  - en
ID  - CMJ_2004_54_3_a12
ER  - 
%0 Journal Article
%A Stanković, Mića S.
%A Minčić, Svetislav M.
%A Velimirović, Ljubica S.
%T On equitorsion holomorphically projective mappings of generalized Kählerian spaces
%J Czechoslovak Mathematical Journal
%D 2004
%P 701-715
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a12/
%G en
%F CMJ_2004_54_3_a12
Stanković, Mića S.; Minčić, Svetislav M.; Velimirović, Ljubica S. On equitorsion holomorphically projective mappings of generalized Kählerian spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 701-715. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a12/

[bib-1] L. P. Eisenhart: Generalized Riemannian spaces I. Proc. Nat. Acad. Sci. USA 37 (1951), 311–315. | DOI | MR

[bib-2] J. Mikeš, G. A. Starko: $K$-koncircular vector fields and holomorphically projective mappings on Kählerian spaces. Rend. del Circolo di Palermo 46 (1997), 123–127. | MR

[bib-3] S. M. Minčić: Ricci identities in the space of non-symmetric affine connection. Mat. Vesnik 10(25) (1973), 161–172. | MR

[bib-4] S. M. Minčić: New commutation formulas in the non-symetric affine connection space. Publ. Inst. Math. (Beograd) (N. S) 22(36) (1977), 189–199. | MR

[bib-5] S. M. Minčić and M. S. Stanković: Equitorsion geodesic mappings of generalized Riemannian spaces. Publ. Inst. Math. (Beograd) (N. S.) 61(75) (1997), 97–104. | MR

[bib-6] S. M. Minčić: Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connection. Coll. Math. Soc. János Bolyai 31 (1979), 445–460. | MR

[bib-7] S. M. Minčić and M. S. Stanković: Generalized Kählerian spaces (submitted).

[bib-8] T. Otsuki and Y. Tasiro: On curves in Kählerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78. | MR

[bib-9] M. Prvanović: A note on holomorphically projective transformations of the Kähler space in a locally product Riemannian space. Tensor 35 (1981), 99–104. | MR

[bib-10] N. S. Sinyukov: Geodesic Mappings of Riemannian Spaces. Nauka, Moscow, 1979. (Russian) | MR | Zbl

[bib-11] K. Yano: Differential Geometry of Complex and Almost Complex Spaces. Pergamon Press, New York, 1965. | MR

[bib-12] K. Yano: On complex conformal connections. Kodai Math. Sem. Rep. 26 (1975), 137–151. | DOI | MR | Zbl