Sequentially complete inductive limits and regularity
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 697-699
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A notion of an almost regular inductive limits is introduced. Every sequentially complete inductive limit of arbitrary locally convex spaces is almost regular.
A notion of an almost regular inductive limits is introduced. Every sequentially complete inductive limit of arbitrary locally convex spaces is almost regular.
Classification : 46A13, 46A30
Keywords: sequential completeness; regular; resp. almost regular; inductive limit of locally convex spaces
@article{CMJ_2004_54_3_a11,
     author = {Gomez-Wulschner, Claudia and Ku\v{c}era, Jan},
     title = {Sequentially complete inductive limits and regularity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {697--699},
     year = {2004},
     volume = {54},
     number = {3},
     mrnumber = {2086726},
     zbl = {1080.46502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a11/}
}
TY  - JOUR
AU  - Gomez-Wulschner, Claudia
AU  - Kučera, Jan
TI  - Sequentially complete inductive limits and regularity
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 697
EP  - 699
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a11/
LA  - en
ID  - CMJ_2004_54_3_a11
ER  - 
%0 Journal Article
%A Gomez-Wulschner, Claudia
%A Kučera, Jan
%T Sequentially complete inductive limits and regularity
%J Czechoslovak Mathematical Journal
%D 2004
%P 697-699
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a11/
%G en
%F CMJ_2004_54_3_a11
Gomez-Wulschner, Claudia; Kučera, Jan. Sequentially complete inductive limits and regularity. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 697-699. http://geodesic.mathdoc.fr/item/CMJ_2004_54_3_a11/

[1] J. Horvath: Topological Vector Spaces and Distributions. Addison-Wesley, 1966 ZBL 0143.15101. | MR

[2] B. M. Makarov: On pathological properties of inductive limits of Banach Spaces. Usp. Mat. Nauk 18, 3 (1963), 171–178. (Russian) | MR

[3] M. de Wilde: Closed Graph Theorems and Webbed Spaces. Pitman, London, 1978 ZBL 0373.46007.

[4] J. Kučera: Sequential completeness of $LF$-spaces. Czechoslovak Math. J. 51(126) (2001), 181–183. | DOI | MR