Complete subobjects of fuzzy sets over $MV$-algebras
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 379-392
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A subobjects structure of the category $\Omega $- of $\Omega $-fuzzy sets over a complete $MV$-algebra $\Omega =(L,\wedge ,\vee ,\otimes ,\rightarrow )$ is investigated, where an $\Omega $-fuzzy set is a pair ${\mathbf A}=(A,\delta )$ such that $A$ is a set and $\delta \:A\times A\rightarrow \Omega $ is a special map. Special subobjects (called complete) of an $\Omega $-fuzzy set ${\mathbf A}$ which can be identified with some characteristic morphisms ${\mathbf A}\rightarrow \Omega ^*=(L\times L,\mu )$ are then investigated. It is proved that some truth-valued morphisms $\lnot _{\Omega }\:\Omega ^*\rightarrow \Omega ^*,\cap _{\Omega }$, $\cup _{\Omega } \:\Omega ^*\times \Omega ^*\rightarrow \Omega ^*$ are characteristic morphisms of complete subobjects.
A subobjects structure of the category $\Omega $- of $\Omega $-fuzzy sets over a complete $MV$-algebra $\Omega =(L,\wedge ,\vee ,\otimes ,\rightarrow )$ is investigated, where an $\Omega $-fuzzy set is a pair ${\mathbf A}=(A,\delta )$ such that $A$ is a set and $\delta \:A\times A\rightarrow \Omega $ is a special map. Special subobjects (called complete) of an $\Omega $-fuzzy set ${\mathbf A}$ which can be identified with some characteristic morphisms ${\mathbf A}\rightarrow \Omega ^*=(L\times L,\mu )$ are then investigated. It is proved that some truth-valued morphisms $\lnot _{\Omega }\:\Omega ^*\rightarrow \Omega ^*,\cap _{\Omega }$, $\cup _{\Omega } \:\Omega ^*\times \Omega ^*\rightarrow \Omega ^*$ are characteristic morphisms of complete subobjects.
Classification : 03E72, 06D15, 18B05
Keywords: fuzzy set over $MV$-lagebra; complete subobjects; subobjects classification
@article{CMJ_2004_54_2_a9,
     author = {Mo\v{c}ko\v{r}, Ji\v{r}{\'\i}},
     title = {Complete subobjects of fuzzy sets over $MV$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {379--392},
     year = {2004},
     volume = {54},
     number = {2},
     mrnumber = {2059258},
     zbl = {1080.18001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a9/}
}
TY  - JOUR
AU  - Močkoř, Jiří
TI  - Complete subobjects of fuzzy sets over $MV$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 379
EP  - 392
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a9/
LA  - en
ID  - CMJ_2004_54_2_a9
ER  - 
%0 Journal Article
%A Močkoř, Jiří
%T Complete subobjects of fuzzy sets over $MV$-algebras
%J Czechoslovak Mathematical Journal
%D 2004
%P 379-392
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a9/
%G en
%F CMJ_2004_54_2_a9
Močkoř, Jiří. Complete subobjects of fuzzy sets over $MV$-algebras. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 379-392. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a9/

[1] M. Eytan: Fuzzy sets: a topos-logical point of view. Fuzzy Sets and Systems 5 (1981), 47–67. | DOI | MR | Zbl

[2] J. A. Goguen: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145–174. | DOI | MR | Zbl

[3] R. Goldblatt: TOPOI, The Categorical Analysis of Logic. North-Holland Publ. Co., Amsterdam-New York-Oxford, 1979. | MR

[4] D. Higgs: A Category Approach to Boolean-Valued Set Theory. Manuscript, University of Waterloo, 1973.

[5] U. Höhle: Presheaves over GL-monoids. In: Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 127–157. | MR

[6] U. Höhle: M-Valued sets and sheaves over integral, commutative cl-monoids. Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-Boston, 1992, pp. 34–72. | MR

[7] U. Höhle: Classification of subsheaves over GL-algebras. Proceedings of Logic Colloquium  98, Prague, Springer Verlag, 1999. | MR

[8] U. Höhle: Commutative, residuated l-monoids. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 53–106. | MR

[9] U. Höhle: Monoidal closed categories, weak topoi and generalized logics. Fuzzy Sets and Systems 42 (1991), 15–35. | DOI | MR

[10] P. T. Johnstone: Topos Theory. Academic Press, London-New York-San Francisco, 1977. | MR | Zbl

[11] Toposes, Algebraic Geometry and Logic. F. W. Lawvere (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 1971. | MR

[12] M. Makkai and E. G. Reyes: Firts Order Categorical Logic. Springer-Verlag, Berlin-New York-Heidelberg, 1977. | MR

[13] A. M. Pitts: Fuzzy sets do not form a topos. Fuzzy Sets and Systems 8 (1982), 101–104. | DOI | MR | Zbl

[14] D. Ponasse: Categorical studies of fuzzy sets. Fuzzy Sets and Systems 28 (1988), 235–244. | DOI | MR | Zbl

[15] A. Pultr: Fuzzy mappings and fuzzy sets. Comment. Mat. Univ. Carolin. 17 (1976), . | MR | Zbl

[16] A. Pultr: Closed Categories of L-fuzzy Sets. Vortrage zur Automaten und Algorithmentheorie, TU Dresden, 1976.

[17] L. N. Stout: A survey of fuzzy set and topos theory. Fuzzy Sets and Systems 42 (1991), 3–14. | DOI | MR | Zbl

[18] O. Wyler: Fuzzy logic and categories of fuzzy sets. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 235–268. | MR | Zbl