Keywords: $p$-Laplacian; nonsmooth critical point theory; Clarke subdifferential; saddle point theorem; periodic solution; Poincare-Wirtinger inequality; Sobolev inequality; nonsmooth Palais-Smale condition
@article{CMJ_2004_54_2_a7,
author = {Papageorgiou, Evgenia H. and Papageorgiou, Nikolaos S.},
title = {Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems},
journal = {Czechoslovak Mathematical Journal},
pages = {347--371},
year = {2004},
volume = {54},
number = {2},
mrnumber = {2059256},
zbl = {1080.34532},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a7/}
}
TY - JOUR AU - Papageorgiou, Evgenia H. AU - Papageorgiou, Nikolaos S. TI - Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems JO - Czechoslovak Mathematical Journal PY - 2004 SP - 347 EP - 371 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a7/ LA - en ID - CMJ_2004_54_2_a7 ER -
%0 Journal Article %A Papageorgiou, Evgenia H. %A Papageorgiou, Nikolaos S. %T Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems %J Czechoslovak Mathematical Journal %D 2004 %P 347-371 %V 54 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a7/ %G en %F CMJ_2004_54_2_a7
Papageorgiou, Evgenia H.; Papageorgiou, Nikolaos S. Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 347-371. http://geodesic.mathdoc.fr/item/CMJ_2004_54_2_a7/
[1] H. Brezis and L. Nirenberg: Remarks on finding critical points. Comm. Pure. Appl. Math. 44 (1991), 939–963. | DOI | MR
[2] K. C. Chang: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. | DOI | MR
[3] F. H. Clarke: Optimization and Nonsmooth Analysis. Wiley, New York, 1983. | MR | Zbl
[4] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, 1997. | MR
[5] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht, 1997. | MR
[6] N. Kourogenis and N. S. Papageorgiou: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. (Series A) 69 (2000), 245–271. | DOI | MR
[7] N. Kourogenis and N. S. Papageorgiou: Periodic solutions for quasilinear differential equations with discontinuous nonlinearities. Acta. Sci. Math. (Szeged) 65 (1999), 529–542. | MR
[8] G. Lebourg: Valeur moyenne pour gradient généralisé. CRAS Paris 281 (1975), 795–797. | MR | Zbl
[9] J. Mawhin and M. Willem: Critical Point Theory and Hamiltonian Systems. Springer-Verlag, Berlin, 1989. | MR
[10] Z. Naniewicz and P. Panagiotopoulos: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York, 1994. | MR
[11] P. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, No.45. AMS, Providence, 1986. | MR
[12] C. L. Tang: Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. Proc. AMS 126 (1998), 3263–3270. | MR | Zbl
[13] C. L. Tang: Existence and multiplicity of periodic solutions for nonautonomous second order systems. Nonlin. Anal. 32 (1998), 299–304. | DOI | MR | Zbl
[14] J. P. Aubin and H. Frankowska: Set-Valued Analysis. Birkhäuser-Verlag, Boston, 1990. | MR